Targeting biomolecules with reversible covalent chemistry - PubMed
Review
Targeting biomolecules with reversible covalent chemistry
Anupam Bandyopadhyay et al. Curr Opin Chem Biol. 2016 Oct.
Abstract
Interaction of biomolecules typically proceeds in a highly selective and reversible manner, for which covalent bond formation has been largely avoided due to the potential difficulty of dissociation. However, employing reversible covalent warheads in drug design has given rise to covalent enzyme inhibitors that serve as powerful therapeutics, as well as molecular probes with exquisite target selectivity. This review article summarizes the recent advances in the development of reversible covalent chemistry for biological and medicinal applications. Specifically, we document the chemical strategies that allow for reversible modification of the three major classes of nucleophiles in biology: thiols, alcohols and amines. Emphasis is given to the chemical mechanisms that underlie the development of these reversible covalent reactions and their utilization in biology.
Copyright © 2016 Elsevier Ltd. All rights reserved.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f87b/5107367/78c3a4f07463/nihms-813474-f0002.gif)
Comparison of a) noncovalent, b) irreversible covalent and c) reversible covalent inhibitors.
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f87b/5107367/92bde6cce280/nihms-813474-f0003.gif)
Reversible covalent chemistry of thiols. a) Reversible conjugation between an α-cyanoacrylate and cysteine. b) Crystal structure of a reversible covalent inhibitor bound to the kinase RSK2, highlighting the covalent linkage as well as a series of noncovalent interactions that give rise to target specificity. c) End-capped α-cyanoacrylamide inhibitors of the BTK kinase and crystal structure of 2 bound to BTK. d) Benzylidene rhodamine-based reversible covalent inhibitors of Hepatitis C NS5b RNA polymerase (left) and a cocrystal structure (right) to illustrate the covalent linkage. The structural images in b, c, and d are adapted with permission from references [7], [10] and [12] respectively.
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f87b/5107367/df7a8f6d0b62/nihms-813474-f0004.gif)
Reversible covalent chemistry of alcohols. a) Reversible targeting of serine/threonine using boronic acid. b) Chemical structure of bortezomib, and its cocrystal structure with the yeast 20S proteasome (PDB: 2F16). c) Mechanism of action (left) and examples (right) of α-ketoamide-based reversible inhibitors. d) Three different classes of nitrile derivatives used for covalent drug design. e) Structure of saxagliptin as an example of nitrile-based reversible covalent inhibitors. f) Crystal structure of DPP4 showing covalent modification of Ser592 by saxagliptin.
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f87b/5107367/0c79d8e733e0/nihms-813474-f0005.gif)
Reversible covalent chemistry of amines. a) PLP-elicited imine formation. b) Coumarin 3-aldehyde based sensors for the detection of important amine-presenting metabolites. The table presents the substrate specificity of several sensors. c) A boronic acid-derivatized coumarin 3-aldehyde probe selectively binds glucosamine through cooperative imine and boronate ester formation. d) A molecular probe for the detection of histone deacetylase activity in live cells. e) Reversible iminoboronate formation of biological amines. f) Cartoon illustration of lysine side modification of proteins through iminoboronate formation. g) Illustration of bacterial labeling through iminoboronate formation of bacterial lipids. Shown on the right is a confocal image showing membrane labeling of S. aureus cells via iminoboronate chemistry.
Similar articles
-
Versatile Bioconjugation Chemistries of ortho-Boronyl Aryl Ketones and Aldehydes.
Cambray S, Gao J. Cambray S, et al. Acc Chem Res. 2018 Sep 18;51(9):2198-2206. doi: 10.1021/acs.accounts.8b00154. Epub 2018 Aug 15. Acc Chem Res. 2018. PMID: 30110146 Free PMC article.
-
Gehringer M, Laufer SA. Gehringer M, et al. J Med Chem. 2019 Jun 27;62(12):5673-5724. doi: 10.1021/acs.jmedchem.8b01153. Epub 2019 Jan 25. J Med Chem. 2019. PMID: 30565923 Review.
-
Recent advances in the design of small molecular drugs with acrylamides covalent warheads.
Liang L, Zhang Z, You Q, Guo X. Liang L, et al. Bioorg Med Chem. 2024 Oct 1;112:117902. doi: 10.1016/j.bmc.2024.117902. Epub 2024 Aug 30. Bioorg Med Chem. 2024. PMID: 39236467 Review.
-
Ma Y, Li L, He S, Shang C, Sun Y, Liu N, Meek TD, Wang Y, Shang L. Ma Y, et al. J Med Chem. 2019 Jul 11;62(13):6146-6162. doi: 10.1021/acs.jmedchem.9b00387. Epub 2019 Jun 27. J Med Chem. 2019. PMID: 31184893
-
A Fast Ab Initio Predictor Tool for Covalent Reactivity Estimation of Acrylamides.
Palazzesi F, Grundl MA, Pautsch A, Weber A, Tautermann CS. Palazzesi F, et al. J Chem Inf Model. 2019 Aug 26;59(8):3565-3571. doi: 10.1021/acs.jcim.9b00316. Epub 2019 Jul 15. J Chem Inf Model. 2019. PMID: 31246457
Cited by
-
Shaw SK, Liu W, Gómez Durán CFA, Schreiber CL, Betancourt Mendiola ML, Zhai C, Roland FM, Padanilam SJ, Smith BD. Shaw SK, et al. Chemistry. 2018 Sep 18;24(52):13821-13829. doi: 10.1002/chem.201801825. Epub 2018 Aug 19. Chemistry. 2018. PMID: 30022552 Free PMC article.
-
Merging the Versatile Functionalities of Boronic Acid with Peptides.
Tan Y, Wu J, Song L, Zhang M, Hipolito CJ, Wu C, Wang S, Zhang Y, Yin Y. Tan Y, et al. Int J Mol Sci. 2021 Nov 30;22(23):12958. doi: 10.3390/ijms222312958. Int J Mol Sci. 2021. PMID: 34884766 Free PMC article. Review.
-
Probing the Lewis Acidity of Boronic Acids through Interactions with Arene Substituents.
Jian J, Hammink R, McKenzie CJ, Bickelhaupt FM, Poater J, Mecinović J. Jian J, et al. Chemistry. 2022 Feb 16;28(9):e202104044. doi: 10.1002/chem.202104044. Epub 2022 Jan 22. Chemistry. 2022. PMID: 34958482 Free PMC article.
-
Jang JY, Kim H, Kim HJ, Suh SW, Park SB, Han BW. Jang JY, et al. Sci Rep. 2019 Aug 1;9(1):11168. doi: 10.1038/s41598-019-47672-w. Sci Rep. 2019. PMID: 31371757 Free PMC article.
-
Ikeda Z, Kakegawa K, Kikuchi F, Itono S, Oki H, Yashiro H, Hiyoshi H, Tsuchimori K, Hamagami K, Watanabe M, Sasaki M, Ishihara Y, Tohyama K, Kitazaki T, Maekawa T, Sasaki M. Ikeda Z, et al. J Med Chem. 2022 Jun 23;65(12):8456-8477. doi: 10.1021/acs.jmedchem.2c00463. Epub 2022 Jun 10. J Med Chem. 2022. PMID: 35686954 Free PMC article.
References
-
- Dansen TB, Smits LMM, van Triest MH, de Keizer PLJ, van Leenen D, Koerkamp MG, Szypowska A, Meppelink A, Brenkman AB, Yodoi J, Holstege FCP, Burgering BMT. Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat Chem Biol. 2009;5:664–672. - PubMed
-
- Singh J, Petter RC, Baillie TA, Whitty A. The resurgence of covalent drugs. Nat Rev Drug Discov. 2011;10:307–317. This article presents a detailed and systematic analysis of covalent drugs in comparison to their noncovalent counterparts. - PubMed
-
- Uetrecht J. Idiosyncratic drug reactions: past, present, and future. Chem Res Toxicol. 2008;21:84–92. - PubMed
-
- Pace NJ, Weerapana E. Diverse functional roles of reactive cysteines. ACS Chem Biol. 2013;8:283–296. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources