Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions - PubMed
- ️Sun Jan 01 2017
Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions
Paul A Jackson et al. J Med Chem. 2017.
Abstract
Although Michael acceptors display a potent and broad spectrum of bioactivity, they have largely been ignored in drug discovery because of their presumed indiscriminate reactivity. As such, a dearth of information exists relevant to the thiol reactivity of natural products and their analogues possessing this moiety. In the midst of recently approved acrylamide-containing drugs, it is clear that a good understanding of the hetero-Michael addition reaction and the relative reactivities of biological thiols with Michael acceptors under physiological conditions is needed for the design and use of these compounds as biological tools and potential therapeutics. This Perspective provides information that will contribute to this understanding, such as kinetics of thiol addition reactions, bioactivities, as well as steric and electronic factors that influence the electrophilicity and reversibility of Michael acceptors. This Perspective is focused on α,β-unsaturated carbonyls given their preponderance in bioactive natural products.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/2fe59684cfd2/nihms-848842-f0002.gif)
HCV protease inhibitors.
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/d31baa2beefb/nihms-848842-f0003.gif)
Reversible and irreversible EGFR inhibitors.
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/f635731a409e/nihms-848842-f0004.gif)
FGFR and Btk inhibitors.
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/b9c9b220c8a9/nihms-848842-f0005.gif)
Pan JNK 1/2/3 inhibitors.
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/b4a40c74544a/nihms-848842-f0006.gif)
PI3Kα and VEGFR-2 inhibitors.
![Figure 6](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/032db8128a4a/nihms-848842-f0007.gif)
Inhibitors of Src kinases.
![Figure 7](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/085d4b30949c/nihms-848842-f0008.gif)
Nek2 inhibitors.
![Figure 8](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/35a0f4eda342/nihms-848842-f0009.gif)
Dual EGFR/VEGFR-2 inhibitor.
![Figure 9](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/d9c3d104ae0a/nihms-848842-f0011.gif)
Rapidly reversible nitrile-containing Michael acceptors.
![Figure 10](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/6fcb223a50d4/nihms-848842-f0057.gif)
Example of a microcystin.
![Figure 11](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/eca8f75ab756/nihms-848842-f0059.gif)
Structure of thalassospiramide A.
![Figure 12](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/33c49f520c18/nihms-848842-f0060.gif)
Structure of pyrrocidine A.
![Figure 13](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/9a9b53512a78/nihms-848842-f0062.gif)
Natural products containing α-methylene, α-benzylidene, or α-ethylidene lactams.
![Figure 14](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/e067084cee04/nihms-848842-f0064.gif)
Inhibitors of human rhinovirus 3C protease (HRV-3CP).
![Figure 15](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/6d56c09b0126/nihms-848842-f0084.gif)
Michael acceptors and pseudo-first order reaction rates with N-acetyl-cysteine methyl ester.
![Figure 16](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/5980bb77d00b/nihms-848842-f0085.gif)
Irreversible papain inhibitors.
![Figure 17](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/79498e1d0cfc/nihms-848842-f0086.gif)
Inhibitors of CRM1-mediated nucleocytoplasmic transport and their IC50 values.
![Figure 18](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/3bf573296909/nihms-848842-f0087.gif)
Kozusamycin A with analogs and cytotoxicity towards HPAC cells.
![Figure 19](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/d4ddddbcebe8/nihms-848842-f0092.gif)
Examples of cardenolide natural products containing a butenolide.
![Figure 20](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/c42117b585cd/nihms-848842-f0096.gif)
Structures of α-methylene-γ-lactone-containing natural products.
![Figure 21](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/7dd4d4b8ed83/nihms-848842-f0097.gif)
Structures of pseudoguaianolides.
![Figure 22](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/147b99c3e4e7/nihms-848842-f0098.gif)
Natural product α-methylene-γ-lactones and prodrug derivative (fumarate salt of 201 not shown for clarity).
![Figure 23](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/91c550b344f9/nihms-848842-f0099.gif)
Structures of arglabin and derivatives.
![Figure 24](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/aca2450cfa59/nihms-848842-f0100.gif)
Reduction in cytotoxicity (IC50) when substituents are on the exocyclic methylene.
![Figure 25](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/c3c9c464cd8b/nihms-848842-f0101.gif)
Melampomagnolide B and biotinylated derivative used for pulldown studies.
![Figure 26](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/f4d05ef647fc/nihms-848842-f0102.gif)
Library of α-methylene-γ-lactones containing terminal alkynes used as biological probes for the discovery of novel anti-microbial targets.
![Figure 27](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/037a48e1d976/nihms-848842-f0103.gif)
Styryl dienones and proposed mechanism for ortho-hydroxy substituent effect.
![Figure 28](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/2735ebc0e2e9/nihms-848842-f0104.gif)
Styryl ketones and similar Mannich bases.
![Figure 29](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/8a087887cc7d/nihms-848842-f0107.gif)
Structure of curcumin.
![Figure 30](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/1ef56c81f256/nihms-848842-f0109.gif)
Resorcylic acid lactones with IC50 values for inhibition of TNFα-PLAP.
![Figure 31](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/d3a8e5ae7bfb/nihms-848842-f0110.gif)
Synthetic resorcylic acid lactone analogs.
![Figure 32](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/77add3056ade/nihms-848842-f0111.gif)
Selected CyPGs structures.
![Figure 33](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/5a2592b34210/nihms-848842-f0113.gif)
Proposed structure of CyPG crosslinking H-Ras C-terminal peptide (K170-K185).
![Figure 34](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/4e4858e5747f/nihms-848842-f0122.gif)
Natural product (351-354) and synthetic (355-357) cyclopentenediones with biological activity.
![Figure 35](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/a9c620210751/nihms-848842-f0157.gif)
α-Nitrile cyclohexenone dually activated Michael acceptors.
![Figure 36](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/0649630d3fde/nihms-848842-f0160.gif)
Illudin natural products and synthetic derivatives.
![Figure 37](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/9eca2fc6423d/nihms-848842-f0163.gif)
Examples of Bioactive α-haloacrolyl compounds.
![Figure 38](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/94008f4b1fac/nihms-848842-f0166.gif)
Examples of biologically active rhodanines.
![Figure 39](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/6c1316bf0f83/nihms-848842-f0167.gif)
Rhodanines and analogs that did not form detectable adducts with GSH.
![Figure 40](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/85bfede66526/nihms-848842-f0176.gif)
Compounds reactive toward cysteamine.
![Figure 41](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/5290875b3fc8/nihms-848842-f0177.gif)
Compounds nonreactive toward cysteamine.
![Figure 42](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/d695b1cf0cc1/nihms-848842-f0180.gif)
Classification of scaffolds by 13C NMR chemical shift values.
![Figure 43](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/a68f10cdaf55/nihms-848842-f0181.gif)
Relative experimental rates of GSH addition to α,β-unsaturated carbonyls.
![Scheme 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/4ad4141d7c2c/nihms-848842-f0010.gif)
Dimethyl Fumarate Hydrolysis
![Scheme 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/3f8714211bf9/nihms-848842-f0034.gif)
Relative Rates of GSH Addition to N-Arylacrylamides
![Scheme 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/6512ae35aaaa/nihms-848842-f0058.gif)
Rakicidin A and Analog that Forms a 1,6-Addition Product with Methyl Thioglycolate
![Scheme 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/2f173fcc1a74/nihms-848842-f0061.gif)
Thiol Addition to Pyrrolinones
![Scheme 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/27b70d7cd921/nihms-848842-f0063.gif)
Thiol Adduct Formation with α-Methylene-γ-lactams and Oxindoles
![Scheme 6](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/cd7c3b8bcd66/nihms-848842-f0088.gif)
Thiol Addition to Unsaturated Sugars
![Scheme 7](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/7baf26119adf/nihms-848842-f0089.gif)
Thiol Addition to α,β-Unsaturated-δ-valerolactones
![Scheme 8](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/cf725caacd53/nihms-848842-f0090.gif)
Thiol Addition to Dually Activated Chromones
![Scheme 9](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/b955af4f81d1/nihms-848842-f0091.gif)
Thiol Addition Reactions to Coumarins
![Scheme 10](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/be156c40b0eb/nihms-848842-f0093.gif)
Effect of Alkyl Substitution on Thiol Addition to Butenolides
![Scheme 11](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/9c45312d239d/nihms-848842-f0094.gif)
Thiol Adducts as Double Bond Protecting Groups
![Scheme 12](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/a9e6e270e0ec/nihms-848842-f0095.gif)
Thiol Addition to γ-Methylene or γ-Alkylidene Butenolides
![Scheme 13](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/46fc4047beb4/nihms-848842-f0105.gif)
Generic Chalcone and Addition of Cysteamine to 2' Hydroxy Chalcone
![Scheme 14](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/4785a1e8e840/nihms-848842-f0108.gif)
Reversibility of Glutathione Adducts of Curcumin Analogs
![Scheme 15](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/0f2f1cfc8ead/nihms-848842-f0112.gif)
Equilibrium Formation of Thiol Adducts of PGA1 and Δ7-PGA1 Methyl Esters
![Scheme 16](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/a6165318b7a7/nihms-848842-f0114.gif)
Formation of Thiol Adducts with Clavulone Derivatives
![Scheme 17](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/41e22d499127/nihms-848842-f0115.gif)
Reactions and Reversibility of Clavulone Derivatives with Thiols
![Scheme 18](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/c1df1ff4de94/nihms-848842-f0116.gif)
Nucleophilic Addition to Exocyclic vs Endocyclic Enones of Cyclopentenones
![Scheme 19](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/4d366085c2c5/nihms-848842-f0117.gif)
Equilibrium Formation of Thiol Adducts with Cyclopentenones
![Scheme 20](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/ac5af933ac83/nihms-848842-f0118.gif)
Cysteine and Propanethiol Addition to a Triquinane
![Scheme 21](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/edcb2468d181/nihms-848842-f0119.gif)
Selected Kaurane Natural Products and the Reaction of Oridonin with Thiols
![Scheme 22](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/7494fec920d8/nihms-848842-f0120.gif)
Addition of Cysteamine to a Cryptocaryone Analog
![Scheme 23](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/accb67d28a13/nihms-848842-f0121.gif)
Mechanism of Thiol Activation of Calicheamicin and Thiol Addition to a Derivative
![Scheme 24](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/0b80457b040f/nihms-848842-f0123.gif)
Synthesis of Sulfenic Acid Probe and Thiol Reactivity of Cyclopentenediones
![Scheme 25](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/2adf0e9acf91/nihms-848842-f0124.gif)
Reactions of Aldehydes with Thiols
![Scheme 26](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/c2bc92f2d398/nihms-848842-f0153.gif)
Dually Activated Michael Acceptors
![Scheme 27](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/31db055023d5/nihms-848842-f0154.gif)
Reversibility of Dually Activated Michael Acceptors and RSK2 Inhibitors
![Scheme 28](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/23edf5e5f18c/nihms-848842-f0155.gif)
Tunable Reversibility of α-Heteroaromatic-Substituted Acrylonitriles
![Scheme 29](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/537940088069/nihms-848842-f0156.gif)
Effect of β-Substituent on the Reversibility of Thiol Addition to Dually Activated Michael Acceptors
![Scheme 30](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/74fab0695614/nihms-848842-f0161.gif)
Mechanism for Direct Thiol Alkylation of Hydroxymethylacylfulvene
![Scheme 31](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/edcfb5291f96/nihms-848842-f0162.gif)
Products Obtained from the Reaction of HMAF with Thiols
![Scheme 32](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/97586887b75f/nihms-848842-f0164.gif)
Reactions of α-Bromocyclopentenone with Thiols and DNA
![Scheme 33](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/25baebc0549c/nihms-848842-f0165.gif)
Products of Thiol Addition to α-Halo Butenolide with Proposed Intermediate
![Scheme 34](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/c9003c21c1c0/nihms-848842-f0168.gif)
Reversible Additions of Thiols to Rhodanines and Related Scaffolds
![Scheme 35](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/ea67e174bcff/nihms-848842-f0169.gif)
Reaction of Thiol and Amine Nucleophiles with Wortmannin
![Scheme 36](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/653d3a12ae27/nihms-848842-f0170.gif)
Crossover Experiments Showing the Reversibility of Wortmannin Adducts
![Scheme 37](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/aef747659863/nihms-848842-f0171.gif)
Reaction of Monomethyl Fumarate with GSH
![Scheme 38](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/7c9914186d4b/nihms-848842-f0172.gif)
Reaction of Fumaric Acid with GSH
![Scheme 39](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/65043e6cf3b9/nihms-848842-f0173.gif)
pH Dependence of Thiol Reactive Quinolines
![Scheme 40](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/fcc1df093556/nihms-848842-f0174.gif)
Coumarin Based Fluorogenic Probes and Second Order Rates Constants for GSH Addition
![Scheme 41](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/07e6578598eb/nihms-848842-f0175.gif)
Fluorescence of Quinazoline Michael Acceptors upon Covalent Modification of a Cysteine in c-Src
![Scheme 42](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/b85ce5e3683d/nihms-848842-f0178.gif)
Reaction of α,β-Unsaturated Aldehydes with Cysteamine
![Scheme 43](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8d/5308545/60bb0f5b8724/nihms-848842-f0179.gif)
Methyl Cinnamates in Order of Decreasing Rates of GSH Addition
Similar articles
-
Krenske EH, Petter RC, Houk KN. Krenske EH, et al. J Org Chem. 2016 Dec 2;81(23):11726-11733. doi: 10.1021/acs.joc.6b02188. Epub 2016 Nov 8. J Org Chem. 2016. PMID: 27934455
-
Paasche A, Schiller M, Schirmeister T, Engels B. Paasche A, et al. ChemMedChem. 2010 Jun 7;5(6):869-80. doi: 10.1002/cmdc.201000020. ChemMedChem. 2010. PMID: 20401893 Free PMC article.
-
Dynamic thiol exchange with β-sulfido-α,β-unsaturated carbonyl compounds and dithianes.
Joshi G, Anslyn EV. Joshi G, et al. Org Lett. 2012 Sep 21;14(18):4714-7. doi: 10.1021/ol301781u. Epub 2012 Aug 30. Org Lett. 2012. PMID: 22934665 Free PMC article.
-
Thiol-addition reactions and their applications in thiol recognition.
Yin C, Huo F, Zhang J, Martínez-Máñez R, Yang Y, Lv H, Li S. Yin C, et al. Chem Soc Rev. 2013 Jul 21;42(14):6032-59. doi: 10.1039/c3cs60055f. Chem Soc Rev. 2013. PMID: 23703585 Review.
-
Piesche M, Roos J, Kühn B, Fettel J, Hellmuth N, Brat C, Maucher IV, Awad O, Matrone C, Comerma Steffensen SG, Manolikakes G, Heinicke U, Zacharowski KD, Steinhilber D, Maier TJ. Piesche M, et al. Front Pharmacol. 2020 Sep 3;11:1297. doi: 10.3389/fphar.2020.01297. eCollection 2020. Front Pharmacol. 2020. PMID: 33013366 Free PMC article. Review.
Cited by
-
Li P, Tian X, Zhang D, Ou H, Huang Q, Jin W, Liu R. Li P, et al. BMC Pharmacol Toxicol. 2024 Jun 28;25(1):36. doi: 10.1186/s40360-024-00758-2. BMC Pharmacol Toxicol. 2024. PMID: 38943212 Free PMC article.
-
Chaudhuri S, Rogers DM, Hayes CJ, Inzani K, Hirst JD. Chaudhuri S, et al. J Chem Inf Model. 2024 Oct 14;64(19):7687-7697. doi: 10.1021/acs.jcim.4c01379. Epub 2024 Sep 12. J Chem Inf Model. 2024. PMID: 39265068 Free PMC article.
-
Thia-Michael Reaction: The Route to Promising Covalent Adaptable Networks.
Berne D, Ladmiral V, Leclerc E, Caillol S. Berne D, et al. Polymers (Basel). 2022 Oct 21;14(20):4457. doi: 10.3390/polym14204457. Polymers (Basel). 2022. PMID: 36298037 Free PMC article. Review.
-
Murakami Y, Kawata A, Suzuki S, Fujisawa S. Murakami Y, et al. In Vivo. 2018 Nov-Dec;32(6):1309-1322. doi: 10.21873/invivo.11381. In Vivo. 2018. PMID: 30348683 Free PMC article.
-
Cheng XR, Yu BT, Song J, Ma JH, Chen YY, Zhang CX, Tu PH, Muskat MN, Zhu ZG. Cheng XR, et al. Antioxidants (Basel). 2022 Dec 5;11(12):2406. doi: 10.3390/antiox11122406. Antioxidants (Basel). 2022. PMID: 36552614 Free PMC article.
References
-
- Schöwobel JAH, Koleva YK, Enoch SJ, Bajot F, Hewitt M, Madden JC, Roberts DW, Schultz TW, Cronin MTD. Measurement and Estimation of Electrophilic Reactivity for Predictive Toxicology. Chem. Rev. 2011;111:2562–2596. - PubMed
-
- Singh J, Petter RC, Baillie TA, Whitty A. The Resurgence of Covalent Drugs. Nat. Rev. Drug Disc. 2011;10:307–317. - PubMed
-
- Parsons ZD, Gates KS. Redox Regulation of Protein Tyrosine Phosphatases: Methods for Kinetic Analysis of Covalent Enzyme Inactivation. In: Cadenas E, Packer L, editors. Methods in Enzymology Volume 528: Hydrogen Peroxide and Cell Signaling Part C. Vol. 528. Elsevier Science Publishing Co Inc; San Diego: 2013. pp. 130–154. - PubMed
- Kitz R, Wilson IB. Esters of Methanesulfonic Acid as Irreversible Inhibitors of Acetylcholinesterase. J. Biol. Chem. 1962;237:3245–3249. - PubMed
- Nagahara N, Sawada N, Nakagawa T. Affinity Labeling of a Catalytic Site, Cysteine 247, in Rat Mercaptopyruvate Sulfurtransfera se by Chloropyruvate as an Analog of a Substrate. Biochimie. 2004;86:723–729. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Chemical Information
Research Materials