SMiLE-seq identifies binding motifs of single and dimeric transcription factors - PubMed
. 2017 Mar;14(3):316-322.
doi: 10.1038/nmeth.4143. Epub 2017 Jan 16.
Affiliations
- PMID: 28092692
- DOI: 10.1038/nmeth.4143
SMiLE-seq identifies binding motifs of single and dimeric transcription factors
Alina Isakova et al. Nat Methods. 2017 Mar.
Abstract
Resolving the DNA-binding specificities of transcription factors (TFs) is of critical value for understanding gene regulation. Here, we present a novel, semiautomated protein-DNA interaction characterization technology, selective microfluidics-based ligand enrichment followed by sequencing (SMiLE-seq). SMiLE-seq is neither limited by DNA bait length nor biased toward strong affinity binders; it probes the DNA-binding properties of TFs over a wide affinity range in a fast and cost-effective fashion. We validated SMiLE-seq by analyzing 58 full-length human, mouse, and Drosophila TFs from distinct structural classes. All tested TFs yielded DNA-binding models with predictive power comparable to or greater than that of other in vitro assays. De novo motif discovery on all JUN-FOS heterodimers and several nuclear receptor-TF complexes provided novel insights into partner-specific heterodimer DNA-binding preferences. We also successfully analyzed the DNA-binding properties of uncharacterized human C2H2 zinc-finger proteins and validated several using ChIP-exo.
Comment in
-
Technique: SMiLE-seq illuminates transcription factor motifs.
Starling S. Starling S. Nat Rev Genet. 2017 Mar;18(3):144-145. doi: 10.1038/nrg.2017.5. Epub 2017 Jan 31. Nat Rev Genet. 2017. PMID: 28138146 No abstract available.
Similar articles
-
Computational Methods for Analysis of the DNA-Binding Preferences of Cys2His2 Zinc-Finger Proteins.
Doğan B, Najafabadi HS. Doğan B, et al. Methods Mol Biol. 2018;1867:15-28. doi: 10.1007/978-1-4939-8799-3_2. Methods Mol Biol. 2018. PMID: 30155812
-
Glick Y, Orenstein Y, Chen D, Avrahami D, Zor T, Shamir R, Gerber D. Glick Y, et al. Nucleic Acids Res. 2016 Apr 7;44(6):e51. doi: 10.1093/nar/gkv1327. Epub 2015 Dec 3. Nucleic Acids Res. 2016. PMID: 26635393 Free PMC article.
-
Identification of C2H2-ZF binding preferences from ChIP-seq data using RCADE.
Najafabadi HS, Albu M, Hughes TR. Najafabadi HS, et al. Bioinformatics. 2015 Sep 1;31(17):2879-81. doi: 10.1093/bioinformatics/btv284. Epub 2015 May 6. Bioinformatics. 2015. PMID: 25953800 Free PMC article.
-
In vitro DNA-binding profile of transcription factors: methods and new insights.
Wang J, Lu J, Gu G, Liu Y. Wang J, et al. J Endocrinol. 2011 Jul;210(1):15-27. doi: 10.1530/JOE-11-0010. Epub 2011 Mar 9. J Endocrinol. 2011. PMID: 21389103 Review.
-
Defining bacterial regulons using ChIP-seq.
Myers KS, Park DM, Beauchene NA, Kiley PJ. Myers KS, et al. Methods. 2015 Sep 15;86:80-8. doi: 10.1016/j.ymeth.2015.05.022. Epub 2015 May 29. Methods. 2015. PMID: 26032817 Free PMC article. Review.
Cited by
-
Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework.
Yang J, Ma A, Hoppe AD, Wang C, Li Y, Zhang C, Wang Y, Liu B, Ma Q. Yang J, et al. Nucleic Acids Res. 2019 Sep 5;47(15):7809-7824. doi: 10.1093/nar/gkz672. Nucleic Acids Res. 2019. PMID: 31372637 Free PMC article.
-
Frochaux MV, Bou Sleiman M, Gardeux V, Dainese R, Hollis B, Litovchenko M, Braman VS, Andreani T, Osman D, Deplancke B. Frochaux MV, et al. Genome Biol. 2020 Jan 17;21(1):6. doi: 10.1186/s13059-019-1912-z. Genome Biol. 2020. PMID: 31948474 Free PMC article.
-
Chen W, Schwalie PC, Pankevich EV, Gubelmann C, Raghav SK, Dainese R, Cassano M, Imbeault M, Jang SM, Russeil J, Delessa T, Duc J, Trono D, Wolfrum C, Deplancke B. Chen W, et al. Nat Commun. 2019 Apr 18;10(1):1809. doi: 10.1038/s41467-019-09803-9. Nat Commun. 2019. PMID: 31000713 Free PMC article.
-
Yanagida K, Engelbrecht E, Niaudet C, Jung B, Gaengel K, Holton K, Swendeman S, Liu CH, Levesque MV, Kuo A, Fu Z, Smith LEH, Betsholtz C, Hla T. Yanagida K, et al. Dev Cell. 2020 Mar 23;52(6):779-793.e7. doi: 10.1016/j.devcel.2020.01.016. Epub 2020 Feb 13. Dev Cell. 2020. PMID: 32059774 Free PMC article.
-
Bayesian Markov models improve the prediction of binding motifs beyond first order.
Ge W, Meier M, Roth C, Söding J. Ge W, et al. NAR Genom Bioinform. 2021 Apr 20;3(2):lqab026. doi: 10.1093/nargab/lqab026. eCollection 2021 Jun. NAR Genom Bioinform. 2021. PMID: 33928244 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous