On the Pathogenesis of Alzheimer's Disease: The MAM Hypothesis - PubMed
Review
On the Pathogenesis of Alzheimer's Disease: The MAM Hypothesis
Estela Area-Gomez et al. FASEB J. 2017 Mar.
Abstract
The pathogenesis of Alzheimer's disease (AD) is currently unclear and is the subject of much debate. The most widely accepted hypothesis designed to explain AD pathogenesis is the amyloid cascade, which invokes the accumulation of extracellular plaques and intracellular tangles as playing a fundamental role in the course and progression of the disease. However, besides plaques and tangles, other biochemical and morphological features are also present in AD, often manifesting early in the course of the disease before the accumulation of plaques and tangles. These include altered calcium, cholesterol, and phospholipid metabolism; altered mitochondrial dynamics; and reduced bioenergetic function. Notably, these other features of AD are associated with functions localized to a subdomain of the endoplasmic reticulum (ER), known as mitochondria-associated ER membranes (MAMs). The MAM region of the ER is a lipid raft-like domain closely apposed to mitochondria in such a way that the 2 organelles are able to communicate with each other, both physically and biochemically, thereby facilitating the functions of this region. We have found that MAM-localized functions are increased significantly in cellular and animal models of AD and in cells from patients with AD in a manner consistent with the biochemical findings noted above. Based on these and other observations, we propose that increased ER-mitochondrial apposition and perturbed MAM function lie at the heart of AD pathogenesis.-Area-Gomez, E., Schon, E. A. On the pathogenesis of Alzheimer's disease: the MAM hypothesis.
Keywords: cholesterol; endoplasmic reticulum; lipid rafts; mitochondria; phospholipids.
© FASEB.
Conflict of interest statement
This work was supported by the U.S. National Institutes of Health, National Institute on Aging (K01-AG045335; to E.A.-G.) and by the U.S. Department of Defense (W911F-15-1-0169), the Ellison Medical Foundation, and the J. Willard and Alice S. Marriott Foundation (all to E.A.S.).
Similar articles
-
Area-Gomez E, Schon EA. Area-Gomez E, et al. Adv Exp Med Biol. 2017;997:149-156. doi: 10.1007/978-981-10-4567-7_11. Adv Exp Med Biol. 2017. PMID: 28815528 Review.
-
Mitochondria-associated ER membranes in Alzheimer disease.
Schon EA, Area-Gomez E. Schon EA, et al. Mol Cell Neurosci. 2013 Jul;55:26-36. doi: 10.1016/j.mcn.2012.07.011. Epub 2012 Aug 24. Mol Cell Neurosci. 2013. PMID: 22922446 Review.
-
Mitochondria-associated ER membranes and Alzheimer disease.
Area-Gomez E, Schon EA. Area-Gomez E, et al. Curr Opin Genet Dev. 2016 Jun;38:90-96. doi: 10.1016/j.gde.2016.04.006. Epub 2016 May 25. Curr Opin Genet Dev. 2016. PMID: 27235807 Free PMC article. Review.
-
Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis.
Area-Gomez E, Schon EA. Area-Gomez E, et al. J Alzheimers Dis. 2024;98(4):1243-1275. doi: 10.3233/JAD-231318. J Alzheimers Dis. 2024. PMID: 38578892 Free PMC article.
-
Upregulated function of mitochondria-associated ER membranes in Alzheimer disease.
Area-Gomez E, Del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarta C, de Groof AJ, Madra M, Ikenouchi J, Umeda M, Bird TD, Sturley SL, Schon EA. Area-Gomez E, et al. EMBO J. 2012 Nov 5;31(21):4106-23. doi: 10.1038/emboj.2012.202. Epub 2012 Aug 14. EMBO J. 2012. PMID: 22892566 Free PMC article.
Cited by
-
Wang DP, Kang K, Hai J, Lv QL, Wu ZB. Wang DP, et al. J Neuroimmune Pharmacol. 2024 Jan 12;19(1):1. doi: 10.1007/s11481-024-10098-x. J Neuroimmune Pharmacol. 2024. PMID: 38214766 Free PMC article.
-
Nikolaeva NS, Yandulova EY, Aleksandrova YR, Starikov AS, Neganova ME. Nikolaeva NS, et al. Acta Naturae. 2022 Jul-Sep;14(3):19-34. doi: 10.32607/actanaturae.11723. Acta Naturae. 2022. PMID: 36348714 Free PMC article.
-
Presenilin 2-Dependent Maintenance of Mitochondrial Oxidative Capacity and Morphology.
Contino S, Porporato PE, Bird M, Marinangeli C, Opsomer R, Sonveaux P, Bontemps F, Dewachter I, Octave JN, Bertrand L, Stanga S, Kienlen-Campard P. Contino S, et al. Front Physiol. 2017 Oct 12;8:796. doi: 10.3389/fphys.2017.00796. eCollection 2017. Front Physiol. 2017. PMID: 29085303 Free PMC article.
-
New Drug Design Avenues Targeting Alzheimer's Disease by Pharmacoinformatics-Aided Tools.
Arrué L, Cigna-Méndez A, Barbosa T, Borrego-Muñoz P, Struve-Villalobos S, Oviedo V, Martínez-García C, Sepúlveda-Lara A, Millán N, Márquez Montesinos JCE, Muñoz J, Santana PA, Peña-Varas C, Barreto GE, González J, Ramírez D. Arrué L, et al. Pharmaceutics. 2022 Sep 9;14(9):1914. doi: 10.3390/pharmaceutics14091914. Pharmaceutics. 2022. PMID: 36145662 Free PMC article. Review.
-
Tukacs V, Mittli D, Hunyadi-Gulyás É, Hlatky D, Medzihradszky KF, Darula Z, Nyitrai G, Czurkó A, Juhász G, Kardos J, Kékesi KA. Tukacs V, et al. Mol Neurobiol. 2023 Jun;60(6):3158-3174. doi: 10.1007/s12035-023-03215-z. Epub 2023 Feb 21. Mol Neurobiol. 2023. PMID: 36808604 Free PMC article.
References
-
- Hardy J. A., Higgins G. A. (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science , 184–185 - PubMed
-
- Nunomura A., Perry G., Aliev G., Hirai K., Takeda A., Balraj E. K., Jones P. K., Ghanbari H., Wataya T., Shimohama S., Chiba S., Atwood C. S., Petersen R. B., Smith M. A. (2001) Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. , 759–767 - PubMed
-
- Fraser T., Tayler H., Love S. (2010) Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer’s disease. Neurochem. Res. , 503–513 - PubMed
-
- Pettegrew J. W., Panchalingam K., Hamilton R. L., McClure R. J. (2001) Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem. Res. , 771–782 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical