Regional creatine kinase, adenylate kinase, and lactate dehydrogenase in normal canine brain - PubMed
Regional creatine kinase, adenylate kinase, and lactate dehydrogenase in normal canine brain
W L Chandler et al. Stroke. 1988 Feb.
Abstract
Following acute stroke, creatine kinase and other enzymes are released into the cerebrospinal fluid and blood from injured brain tissue. To determine whether regional differences in brain enzyme activity might exist and therefore affect the amount of enzyme released, we quantified the levels of creatine kinase, adenylate kinase, and lactate dehydrogenase in 12 regions of normal canine brain (n = 4). Adenylate kinase activity varied the least among regions (49 +/- 7 units/g), followed by lactate dehydrogenase activity (122 +/- 28 units/g). The pattern for both adenylate kinase and lactate dehydrogenase was higher activity in predominantly gray matter areas, lower activity in white matter, and intermediate activity in mixed regions. The distribution of creatine kinase brain isoenzyme and mitochondrial creatine kinase in canine brain was less predictable, showing wider variations among regions (isoenzyme, 462 +/- 116 units/g; mitochondrial, 42 +/- 20 units/g). Even cerebral gray matter demonstrated substantial regional variations in creatine kinase brain isoenzyme, ranging from 606 units/g in the parietal cortex to 329 units/g in the temporal cortex. We conclude that the content of creatine kinase brain isoenzyme varies more than twofold among areas of brain. This regional variation may be important in the interpretation of creatine kinase brain isoenzyme measurements in cerebrospinal fluid and serum used to assess neurologic injury following stroke.
Similar articles
-
Oncodevelopmental enzymes of the Dunning rat prostatic adenocarcinoma.
Hall M, Silverman L, Wenger AS, Mickey DD. Hall M, et al. Cancer Res. 1985 Sep;45(9):4053-9. Cancer Res. 1985. PMID: 2992772
-
Lactate dehydrogenase and creatine kinase isoenzyme levels in the tissues and serum of normal lambs.
Beatty EM, Doxey DL. Beatty EM, et al. Res Vet Sci. 1983 Nov;35(3):325-30. Res Vet Sci. 1983. PMID: 6665316
-
Lott JA, Stang JM. Lott JA, et al. Clin Chem. 1980 Aug;26(9):1241-50. Clin Chem. 1980. PMID: 6994925 Review.
Cited by
-
Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Wallimann T, et al. Biochem J. 1992 Jan 1;281 ( Pt 1)(Pt 1):21-40. doi: 10.1042/bj2810021. Biochem J. 1992. PMID: 1731757 Free PMC article. Review. No abstract available.
-
Skogseid IM, Nordby HK, Urdal P, Paus E, Lilleaas F. Skogseid IM, et al. Acta Neurochir (Wien). 1992;115(3-4):106-11. doi: 10.1007/BF01406367. Acta Neurochir (Wien). 1992. PMID: 1605077
-
Tomimoto H, Yamamoto K, Homburger HA, Yanagihara T. Tomimoto H, et al. Acta Neuropathol. 1993;86(5):447-55. doi: 10.1007/BF00228579. Acta Neuropathol. 1993. PMID: 8310795
-
Kruse A, Cesarini KG, Bach FW, Persson L. Kruse A, et al. Acta Neurochir (Wien). 1991;110(3-4):106-9. doi: 10.1007/BF01400675. Acta Neurochir (Wien). 1991. PMID: 1927600
-
Ma J, Pinho MC, Harrison CE, Chen J, Sun C, Hackett EP, Liticker J, Ratnakar J, Reed GD, Chen AP, Sherry AD, Malloy CR, Wright SM, Madden CJ, Park JM. Ma J, et al. Magn Reson Med. 2022 Mar;87(3):1136-1149. doi: 10.1002/mrm.29049. Epub 2021 Oct 22. Magn Reson Med. 2022. PMID: 34687086 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources