Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors - PubMed
- ️Sun Jan 01 2017
Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors
Honglong Ning et al. Materials (Basel). 2017.
Abstract
Printing technologies for thin-film transistors (TFTs) have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active layer and the silver electrodes are still problematic for achieving amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs with good electrical performance. In this paper, silver (Ag) source/drain electrodes were directly inkjet-printed on an amorphous a-IGZO layer to fabricate TFTs that exhibited a mobility of 0.29 cm²·V-1·s-1 and an on/off current ratio of over 10⁵. To the best of our knowledge, this is a major improvement for bottom-gate top-contact a-IGZO TFTs with directly printed silver electrodes on a substrate with no pretreatment. This study presents a promising alternative method of fabricating electrodes of a-IGZO TFTs with desirable device performance.
Keywords: a-IGZO; inkjet printing; silver ink; thin film transistors.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3078/5344586/6e06654cd973/materials-10-00051-g001.gif)
(a) Structure of printed S/D electrodes TFT; (b) the final device we have fabricated.
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3078/5344586/e2c2afe1f835/materials-10-00051-g002.gif)
Inkjet-printed Ag S/D electrodes based on Al:Nd/Al2O3:Nd/a-IGZO with different drop spaces: (a) 35 µm; (b) 40 µm; (c) 45 µm.
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3078/5344586/fcf7cb0372b8/materials-10-00051-g003.gif)
Output characteristic curves (IDS–VDS) (a) and transfer characteristic curves (IDS–VGS) (b) of manufactured a-IGZO TFTs with inkjet-printed Ag S/D electrodes as a function of substrate temperatures. VGS is varied from 20 to −20 V with VDS = 10.1 V.
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3078/5344586/764a0fbabe2d/materials-10-00051-g004.gif)
EDS mapping of Ag printed S/D electrodes TFTs with substrate temperature at (a) room temperature and (b) 60 °C.
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3078/5344586/f8810af112a1/materials-10-00051-g005a.gif)
EELS line scanning of a-IGZO/Ag interfaces with printed substrate temperature at (a) room temperature and (b) 60 °C; the x axis step size of the right pictures is 0.3 nm.
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3078/5344586/f8810af112a1/materials-10-00051-g005a.gif)
EELS line scanning of a-IGZO/Ag interfaces with printed substrate temperature at (a) room temperature and (b) 60 °C; the x axis step size of the right pictures is 0.3 nm.
Similar articles
-
Hennek JW, Xia Y, Everaerts K, Hersam MC, Facchetti A, Marks TJ. Hennek JW, et al. ACS Appl Mater Interfaces. 2012 Mar;4(3):1614-9. doi: 10.1021/am201776p. Epub 2012 Feb 24. ACS Appl Mater Interfaces. 2012. PMID: 22321212
-
Secor EB, Smith J, Marks TJ, Hersam MC. Secor EB, et al. ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17428-34. doi: 10.1021/acsami.6b02730. Epub 2016 Jun 28. ACS Appl Mater Interfaces. 2016. PMID: 27327555
-
Choi S, Kim KT, Park SK, Kim YH. Choi S, et al. Materials (Basel). 2019 Mar 13;12(6):852. doi: 10.3390/ma12060852. Materials (Basel). 2019. PMID: 30871272 Free PMC article.
-
Recent Progress in Inkjet-Printed Thin-Film Transistors.
Chung S, Cho K, Lee T. Chung S, et al. Adv Sci (Weinh). 2019 Jan 11;6(6):1801445. doi: 10.1002/advs.201801445. eCollection 2019 Mar 20. Adv Sci (Weinh). 2019. PMID: 30937255 Free PMC article. Review.
-
Lu S , Franklin AD . Lu S , et al. Nanoscale. 2020 Dec 8;12(46):23371-23390. doi: 10.1039/d0nr06231f. Nanoscale. 2020. PMID: 33216106 Review.
Cited by
-
Xiao P, Zhou Y, Gan L, Pan Z, Chen J, Luo D, Yao R, Chen J, Liang H, Ning H. Xiao P, et al. Micromachines (Basel). 2020 Jul 12;11(7):677. doi: 10.3390/mi11070677. Micromachines (Basel). 2020. PMID: 32664692 Free PMC article.
-
UV-Cured Inkjet-Printed Silver Gate Electrode with Low Electrical Resistivity.
Ning H, Zhou Y, Fang Z, Yao R, Tao R, Chen J, Cai W, Zhu Z, Yang C, Wei J, Wang L, Peng J. Ning H, et al. Nanoscale Res Lett. 2017 Sep 25;12(1):546. doi: 10.1186/s11671-017-2300-9. Nanoscale Res Lett. 2017. PMID: 28948539 Free PMC article.
-
Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics.
Mo L, Guo Z, Yang L, Zhang Q, Fang Y, Xin Z, Chen Z, Hu K, Han L, Li L. Mo L, et al. Int J Mol Sci. 2019 Apr 29;20(9):2124. doi: 10.3390/ijms20092124. Int J Mol Sci. 2019. PMID: 31036787 Free PMC article. Review.
-
Chen J, Gan L, Pan Z, Ning H, Fang Z, Liang H, Tao R, Cai W, Yao R, Peng J. Chen J, et al. Nanomaterials (Basel). 2019 Oct 24;9(11):1515. doi: 10.3390/nano9111515. Nanomaterials (Basel). 2019. PMID: 31653004 Free PMC article.
-
Liang H, Yao R, Zhang G, Zhang X, Liang Z, Yang Y, Ning H, Zhong J, Qiu T, Peng J. Liang H, et al. Membranes (Basel). 2022 Jan 24;12(2):141. doi: 10.3390/membranes12020141. Membranes (Basel). 2022. PMID: 35207062 Free PMC article.
References
-
- Park J.S., Maeng W., Kim H., Park J. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films. 2012;520:1679–1693. doi: 10.1016/j.tsf.2011.07.018. - DOI
-
- Choi C.H., Lin L.Y., Cheng C.C., Chang C.H. Printed Oxide Thin Film Transistors: A Mini Review. ECS J. Solid State Sci. Technol. 2015;4:P3044–P3051.
LinkOut - more resources
Full Text Sources
Other Literature Sources