Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Streptomyces lividans TK24 - PubMed
- ️Sun Jan 01 2017
. 2017 Oct 28;27(10):1867-1876.
doi: 10.4014/jmb.1707.07046.
Affiliations
- PMID: 28838222
- DOI: 10.4014/jmb.1707.07046
Free article
Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Streptomyces lividans TK24
Xue-Mei Jin et al. J Microbiol Biotechnol. 2017.
Free article
Abstract
Most of the biosynthetic pathways for secondary metabolites are influenced by carbon metabolism and supply of cytosolic NADPH. We engineered carbon distribution to the pentose phosphate pathway (PPP) and redesigned the host to produce high levels of NADPH and primary intermediates from the PPP. The main enzymes producing NADPH in the PPP, glucose 6-phosphate dehydrogenase (encoded by zwf1 and zwf2) and 6-phosphogluconate dehydrogenase (encoded by zwf3), were overexpressed with opc encoding a positive allosteric effector essential for Zwf activity in various combinations in Streptomyces lividans TK24. Most S. lividans transformants showed better cell growth and higher concentration of cytosolic NADPH than those of the control, and S. lividans TK24/pWHM3-Z23O2 containing zwf2+zwf3+opc2 showed the highest NADPH concentration but poor sporulation in R2YE medium. S. lividans TK24/pWHM3-Z23O2 in minimal medium showed the maximum growth (6.2 mg/ml) at day 4. Thereafter, a gradual decrease of biomass and a sharp increase of cytosolic NADPH and sedoheptulose 7-phosphate between days 2 and 4 and between days 1 and 3, respectively, were observed. Moreover, S. lividans TK24/pWHM3-Z23O2 produced 0.9 times less actinorhodin but 1.8 times more undecylprodigiosin than the control. These results suggested that the increased NADPH concentration and various intermediates from the PPP specifically triggered undecylprodigiosin biosynthesis that required many precursors and NADPH-dependent reduction reaction. This study is the first report on bespoke metabolic engineering of PPP routes especially suitable for producing secondary metabolites that need diverse primary precursors and NADPH, which is useful information for metabolic engineering in Streptomyces.
Keywords: 6-phosphogluconate dehydrogenase; Glucose-6-phosphate dehydrogenase; Streptomyces lividans; actinorhodin; pentose phosphate pathway; undecylprodigiosin.
Similar articles
-
Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans.
Avignone Rossa C, White J, Kuiper A, Postma PW, Bibb M, Teixeira de Mattos MJ. Avignone Rossa C, et al. Metab Eng. 2002 Apr;4(2):138-50. doi: 10.1006/mben.2001.0217. Metab Eng. 2002. PMID: 12009793
-
Kim YJ, Sa SO, Chang YK, Hong SK, Hong YS. Kim YJ, et al. J Microbiol Biotechnol. 2007 Dec;17(12):2066-70. J Microbiol Biotechnol. 2007. PMID: 18167457
-
Tang Z, Xiao C, Zhuang Y, Chu J, Zhang S, Herron PR, Hunter IS, Guo M. Tang Z, et al. Enzyme Microb Technol. 2011 Jun 10;49(1):17-24. doi: 10.1016/j.enzmictec.2011.04.002. Epub 2011 Apr 8. Enzyme Microb Technol. 2011. PMID: 22112266
-
The return of metabolism: biochemistry and physiology of the pentose phosphate pathway.
Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. Stincone A, et al. Biol Rev Camb Philos Soc. 2015 Aug;90(3):927-63. doi: 10.1111/brv.12140. Epub 2014 Sep 22. Biol Rev Camb Philos Soc. 2015. PMID: 25243985 Free PMC article. Review.
-
Fuentes-Lemus E, Reyes JS, Figueroa JD, Davies MJ, López-Alarcón C. Fuentes-Lemus E, et al. Biochem Soc Trans. 2023 Dec 20;51(6):2173-2187. doi: 10.1042/BST20231027. Biochem Soc Trans. 2023. PMID: 37971161 Review.
Cited by
-
Lu C, Liu Y, Li J, Liu L, Du G. Lu C, et al. J Microbiol Biotechnol. 2019 Jan 28;31(1):154-162. doi: 10.4014/jmb.1910.10069. J Microbiol Biotechnol. 2019. PMID: 31893598 Free PMC article.
-
Cao L, Liu Y, Sun L, Zhu Z, Yang D, Xia Z, Jin D, Dai Z, Rang J, Xia L. Cao L, et al. Synth Syst Biotechnol. 2024 Jun 25;9(4):809-819. doi: 10.1016/j.synbio.2024.06.007. eCollection 2024 Dec. Synth Syst Biotechnol. 2024. PMID: 39072147 Free PMC article.
-
Lejeune C, Sago L, Cornu D, Redeker V, Virolle MJ. Lejeune C, et al. Front Microbiol. 2022 Mar 22;12:813993. doi: 10.3389/fmicb.2021.813993. eCollection 2021. Front Microbiol. 2022. PMID: 35392450 Free PMC article.
-
Zhang Y, Pan L, Zhang Y, Wang K, Wang L, Zhang H, Zhang J, Chen X. Zhang Y, et al. Appl Microbiol Biotechnol. 2023 Apr;107(7-8):2611-2626. doi: 10.1007/s00253-023-12449-9. Epub 2023 Mar 8. Appl Microbiol Biotechnol. 2023. PMID: 36882645
-
Identification and engineering of 32 membered antifungal macrolactone notonesomycins.
Goh F, Zhang MM, Lim TR, Low KN, Nge CE, Heng E, Yeo WL, Sirota FL, Crasta S, Tan Z, Ng V, Leong CY, Zhang H, Lezhava A, Chen SL, Hoon SS, Eisenhaber F, Eisenhaber B, Kanagasundaram Y, Wong FT, Ng SB. Goh F, et al. Microb Cell Fact. 2020 Mar 19;19(1):71. doi: 10.1186/s12934-020-01328-x. Microb Cell Fact. 2020. PMID: 32192516 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical