Complete genome sequence of Citrobacter werkmanii strain BF-6 isolated from industrial putrefaction - PubMed
- ️Sun Jan 01 2017
Complete genome sequence of Citrobacter werkmanii strain BF-6 isolated from industrial putrefaction
Gang Zhou et al. BMC Genomics. 2017.
Abstract
Background: In our previous study, Citrobacter werkmanii BF-6 was isolated from an industrial spoilage sample and demonstrated an excellent ability to form biofilms, which could be affected by various environmental factors. However, the genome sequence of this organism has not been reported so far.
Results: We report the complete genome sequence of C. werkmanii BF-6 together with the description of the genome features and its annotation. The size of the complete chromosome is 4,929,789 bp with an average coverage of 137×. The chromosome exhibits an average G + C content of 52.0%, and encodes 4570 protein coding genes, 84 tRNA genes, 25 rRNA operons, 3 microsatellite sequences and 34 minisatellite sequences. A previously unknown circular plasmid designated as pCW001 was also found with a length of 212,549 bp and a G + C content of 48.2%. 73.5%, 75.6% and 92.6% of the protein coding genes could be assigned to GO Ontology, KEGG Pathway, and COG (Clusters of Orthologous Groups) categories respectively. C. werkmanii BF-6 and C. werkmanii NRBC 105721 exhibited the closest evolutionary relationships based on 16S ribosomal RNA and core-pan genome assay. Furthermore, C. werkmanii BF-6 exhibits typical bacterial biofilm formation and development. In the RT-PCR experiments, we found that a great number of biofilm related genes, such as bsmA, bssR, bssS, hmsP, tabA, csgA, csgB, csgC, csgD, csgE, and csgG, were involved in C. werkmanii BF-6 biofilm formation.
Conclusions: This is the first complete genome of C. werkmanii. Our work highlights the potential genetic mechanisms involved in biofilm formation and paves a way for further application of C. werkmanii in biofilms research.
Keywords: Biofilm formation; Citrobacter werkmanii; Complete genome; Evolutionary relationships; RT-PCR.
Conflict of interest statement
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures
Similar articles
-
Zhou G, Wang YS, Peng H, Huang XM, Xie XB, Shi QS. Zhou G, et al. Int J Mol Sci. 2018 Sep 6;19(9):2644. doi: 10.3390/ijms19092644. Int J Mol Sci. 2018. PMID: 30200616 Free PMC article.
-
Zhou G, Li LJ, Shi QS, Ouyang YS, Chen YB, Hu WF. Zhou G, et al. J Microbiol Biotechnol. 2013 Dec;23(12):1673-82. doi: 10.4014/jmb1307.07041. J Microbiol Biotechnol. 2013. PMID: 24018970
-
Zhou G, Wang YS, Peng H, Li SJ, Sun TL, Shen PF, Xie XB, Shi QS. Zhou G, et al. Appl Microbiol Biotechnol. 2021 Apr;105(7):2841-2854. doi: 10.1007/s00253-020-11057-1. Epub 2021 Mar 25. Appl Microbiol Biotechnol. 2021. PMID: 33763710
-
Proteome responses of Citrobacter werkmanii BF-6 planktonic cells and biofilms to calcium chloride.
Zhou G, Shi QS, Huang XM, Xie XB. Zhou G, et al. J Proteomics. 2016 Feb 5;133:134-143. doi: 10.1016/j.jprot.2015.12.019. Epub 2015 Dec 28. J Proteomics. 2016. PMID: 26732726
-
Zhou G, Wang YS, Peng H, Li SJ, Sun TL, Li CL, Shi QS, Xie XB. Zhou G, et al. Gene. 2023 Jan 30;851:147019. doi: 10.1016/j.gene.2022.147019. Epub 2022 Oct 29. Gene. 2023. PMID: 36349578
Cited by
-
Cheng K, Fang LX, Ge QW, Wang D, He B, Lu JQ, Zhong ZX, Wang XR, Yu Y, Lian XL, Liao XP, Sun J, Liu YH. Cheng K, et al. Front Microbiol. 2021 Feb 5;12:586504. doi: 10.3389/fmicb.2021.586504. eCollection 2021. Front Microbiol. 2021. PMID: 33613474 Free PMC article.
-
Zhou G, Wang YS, Peng H, Huang XM, Xie XB, Shi QS. Zhou G, et al. Int J Mol Sci. 2018 Sep 6;19(9):2644. doi: 10.3390/ijms19092644. Int J Mol Sci. 2018. PMID: 30200616 Free PMC article.
-
Shan S, Cheng W, Li Y, Zhang M, Liu Z, Wang Y, Wei X, Fu Z, Wu S, Du D, Guo Z. Shan S, et al. BMC Genomics. 2022 Dec 19;23(1):838. doi: 10.1186/s12864-022-09069-4. BMC Genomics. 2022. PMID: 36536293 Free PMC article.
-
Thomas SG, Glover MA, Parthasarathy A, Wong NH, Shipman PA, Hudson AO. Thomas SG, et al. Microorganisms. 2020 Aug 1;8(8):1172. doi: 10.3390/microorganisms8081172. Microorganisms. 2020. PMID: 32752245 Free PMC article.
-
Aguirre-Sánchez JR, Quiñones B, Ortiz-Muñoz JA, Prieto-Alvarado R, Vega-López IF, Martínez-Urtaza J, Lee BG, Chaidez C. Aguirre-Sánchez JR, et al. Microorganisms. 2023 Aug 19;11(8):2114. doi: 10.3390/microorganisms11082114. Microorganisms. 2023. PMID: 37630674 Free PMC article.
References
-
- Katzenellenbogen E, Kocharova NA, Korzeniowska-Kowal A, Bogulska M, Rybka J, Gamian A, Kachala VV, Shashkov AS, Knirel YA. Structure of the glycerol phosphate-containing O-specific polysaccharide and serological studies on the lipopolysaccharides of Citrobacter werkmanii PCM 1548 and PCM 1549 (serogroup O14) FEMS Immunol Med Microbiol. 2008;54:255–262. doi: 10.1111/j.1574-695X.2008.00477.x. - DOI - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous