Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis - PubMed
Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis
Homa Majd et al. Biochim Biophys Acta Bioenerg. 2018 Jan.
Free article
Abstract
Missense mutations of the human mitochondrial citrate carrier, encoded by the SLC25A1 gene, lead to an autosomal recessive neurometabolic disorder characterised by neonatal-onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development, often resulting in early death. Here, we have measured the effect of all twelve known pathogenic mutations on the transport activity. The results show that nine mutations abolish transport of citrate completely, whereas the other three reduce the transport rate by >70%, indicating that impaired citrate transport is the most likely primary cause of the disease. Some mutations may be detrimental to the structure of the carrier, whereas others may impair key functional elements, such as the substrate binding site and the salt bridge network on the matrix side of the carrier. To understand the consequences of impaired citrate transport on metabolism, the substrate specificity was also determined, showing that the human citrate carrier predominantly transports citrate, isocitrate, cis-aconitate, phosphoenolpyruvate and malate. Although D-2- and L-2 hydroxyglutaric aciduria is a metabolic hallmark of the disease, it is unlikely that the citrate carrier plays a significant role in the removal of hydroxyglutarate from the cytosol for oxidation to oxoglutarate in the mitochondrial matrix. In contrast, computer simulations of central metabolism predict that the export of citrate from the mitochondrion cannot be fully compensated by other pathways, restricting the cytosolic production of acetyl-CoA that is required for the synthesis of lipids, sterols, dolichols and ubiquinone, which in turn explains the severe disease phenotypes.
Keywords: Citrate metabolism; Mitochondrial carriers; Mitochondrial disease; Mitochondrial tricarboxylate carrier; Structure-function relationships; Transport.
Copyright © 2017. Published by Elsevier B.V.
Similar articles
-
An overview of combined D-2- and L-2-hydroxyglutaric aciduria: functional analysis of CIC variants.
Pop A, Williams M, Struys EA, Monné M, Jansen EEW, De Grassi A, Kanhai WA, Scarcia P, Ojeda MRF, Porcelli V, van Dooren SJM, Lennertz P, Nota B, Abdenur JE, Coman D, Das AM, El-Gharbawy A, Nuoffer JM, Polic B, Santer R, Weinhold N, Zuccarelli B, Palmieri F, Palmieri L, Salomons GS. Pop A, et al. J Inherit Metab Dis. 2018 Mar;41(2):169-180. doi: 10.1007/s10545-017-0106-7. Epub 2017 Dec 13. J Inherit Metab Dis. 2018. PMID: 29238895 Free PMC article.
-
Mühlhausen C, Salomons GS, Lukacs Z, Struys EA, van der Knaap MS, Ullrich K, Santer R. Mühlhausen C, et al. J Inherit Metab Dis. 2014 Sep;37(5):775-81. doi: 10.1007/s10545-014-9702-y. Epub 2014 Apr 1. J Inherit Metab Dis. 2014. PMID: 24687295
-
Nota B, Struys EA, Pop A, Jansen EE, Fernandez Ojeda MR, Kanhai WA, Kranendijk M, van Dooren SJ, Bevova MR, Sistermans EA, Nieuwint AW, Barth M, Ben-Omran T, Hoffmann GF, de Lonlay P, McDonald MT, Meberg A, Muntau AC, Nuoffer JM, Parini R, Read MH, Renneberg A, Santer R, Strahleck T, van Schaftingen E, van der Knaap MS, Jakobs C, Salomons GS. Nota B, et al. Am J Hum Genet. 2013 Apr 4;92(4):627-31. doi: 10.1016/j.ajhg.2013.03.009. Am J Hum Genet. 2013. PMID: 23561848 Free PMC article.
-
Mosaoa R, Kasprzyk-Pawelec A, Fernandez HR, Avantaggiati ML. Mosaoa R, et al. Biomolecules. 2021 Jan 22;11(2):141. doi: 10.3390/biom11020141. Biomolecules. 2021. PMID: 33499062 Free PMC article. Review.
-
Eguchi M, Ozaki E, Yamauchi T, Ohta M, Higaki T, Masuda K, Imoto I, Ishii E, Eguchi-Ishimae M. Eguchi M, et al. Am J Med Genet A. 2018 Feb;176(2):351-358. doi: 10.1002/ajmg.a.38578. Epub 2017 Dec 19. Am J Med Genet A. 2018. PMID: 29265763 Review.
Cited by
-
Curcio R, Lunetti P, Zara V, Ferramosca A, Marra F, Fiermonte G, Cappello AR, De Leonardis F, Capobianco L, Dolce V. Curcio R, et al. Int J Mol Sci. 2020 Aug 22;21(17):6052. doi: 10.3390/ijms21176052. Int J Mol Sci. 2020. PMID: 32842667 Free PMC article. Review.
-
The SLC25 Carrier Family: Important Transport Proteins in Mitochondrial Physiology and Pathology.
Kunji ERS, King MS, Ruprecht JJ, Thangaratnarajah C. Kunji ERS, et al. Physiology (Bethesda). 2020 Sep 1;35(5):302-327. doi: 10.1152/physiol.00009.2020. Physiology (Bethesda). 2020. PMID: 32783608 Free PMC article. Review.
-
Mitochondrial diseases: expanding the diagnosis in the era of genetic testing.
Saneto RP. Saneto RP. J Transl Genet Genom. 2020;4:384-428. doi: 10.20517/jtgg.2020.40. Epub 2020 Sep 29. J Transl Genet Genom. 2020. PMID: 33426505 Free PMC article.
-
Metabolic Reprogramming by Malat1 Depletion in Prostate Cancer.
Nanni S, Aiello A, Salis C, Re A, Cencioni C, Bacci L, Pierconti F, Pinto F, Ripoli C, Ostano P, Baroni S, Lazzarino G, Tavazzi B, Pugliese D, Bassi P, Grassi C, Panunzi S, Chiorino G, Pontecorvi A, Gaetano C, Farsetti A. Nanni S, et al. Cancers (Basel). 2020 Dec 22;13(1):15. doi: 10.3390/cancers13010015. Cancers (Basel). 2020. PMID: 33375130 Free PMC article.
-
Huber RJ. Huber RJ. J Biomed Sci. 2020 May 20;27(1):64. doi: 10.1186/s12929-020-00653-y. J Biomed Sci. 2020. PMID: 32430003 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous