MoRFPred-plus: Computational Identification of MoRFs in Protein Sequences using Physicochemical Properties and HMM profiles - PubMed
- ️Mon Jan 01 2018
MoRFPred-plus: Computational Identification of MoRFs in Protein Sequences using Physicochemical Properties and HMM profiles
Ronesh Sharma et al. J Theor Biol. 2018.
Free article
Abstract
Motivation: Intrinsically Disordered Proteins (IDPs) lack stable tertiary structure and they actively participate in performing various biological functions. These IDPs expose short binding regions called Molecular Recognition Features (MoRFs) that permit interaction with structured protein regions. Upon interaction they undergo a disorder-to-order transition as a result of which their functionality arises. Predicting these MoRFs in disordered protein sequences is a challenging task.
Method: In this study, we present MoRFpred-plus, an improved predictor over our previous proposed predictor to identify MoRFs in disordered protein sequences. Two separate independent propensity scores are computed via incorporating physicochemical properties and HMM profiles, these scores are combined to predict final MoRF propensity score for a given residue. The first score reflects the characteristics of a query residue to be part of MoRF region based on the composition and similarity of assumed MoRF and flank regions. The second score reflects the characteristics of a query residue to be part of MoRF region based on the properties of flanks associated around the given residue in the query protein sequence. The propensity scores are processed and common averaging is applied to generate the final prediction score of MoRFpred-plus.
Results: Performance of the proposed predictor is compared with available MoRF predictors, MoRFchibi, MoRFpred, and ANCHOR. Using previously collected training and test sets used to evaluate the mentioned predictors, the proposed predictor outperforms these predictors and generates lower false positive rate. In addition, MoRFpred-plus is a downloadable predictor, which makes it useful as it can be used as input to other computational tools.
Availability: https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus:-Download.
Keywords: Hidden Markov model; Intrinsically disordered proteins; Molecular recognition feature; Support vector machine.
Copyright © 2017 Elsevier Ltd. All rights reserved.
Similar articles
-
Predicting MoRFs in protein sequences using HMM profiles.
Sharma R, Kumar S, Tsunoda T, Patil A, Sharma A. Sharma R, et al. BMC Bioinformatics. 2016 Dec 22;17(Suppl 19):504. doi: 10.1186/s12859-016-1375-0. BMC Bioinformatics. 2016. PMID: 28155710 Free PMC article.
-
Computational identification of MoRFs in protein sequences.
Malhis N, Gsponer J. Malhis N, et al. Bioinformatics. 2015 Jun 1;31(11):1738-44. doi: 10.1093/bioinformatics/btv060. Epub 2015 Jan 30. Bioinformatics. 2015. PMID: 25637562 Free PMC article.
-
OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.
Sharma R, Raicar G, Tsunoda T, Patil A, Sharma A. Sharma R, et al. Bioinformatics. 2018 Jun 1;34(11):1850-1858. doi: 10.1093/bioinformatics/bty032. Bioinformatics. 2018. PMID: 29360926
-
Li H, Pang Y, Liu B, Yu L. Li H, et al. Front Pharmacol. 2022 Mar 8;13:856417. doi: 10.3389/fphar.2022.856417. eCollection 2022. Front Pharmacol. 2022. PMID: 35350759 Free PMC article. Review.
-
Computational prediction of functions of intrinsically disordered regions.
Katuwawala A, Ghadermarzi S, Kurgan L. Katuwawala A, et al. Prog Mol Biol Transl Sci. 2019;166:341-369. doi: 10.1016/bs.pmbts.2019.04.006. Epub 2019 May 20. Prog Mol Biol Transl Sci. 2019. PMID: 31521235 Review.
Cited by
-
Boone K, Camarda K, Spencer P, Tamerler C. Boone K, et al. BMC Bioinformatics. 2018 Dec 6;19(1):469. doi: 10.1186/s12859-018-2514-6. BMC Bioinformatics. 2018. PMID: 30522443 Free PMC article.
-
Redwan EM, Al-Hejin AM, Almehdar HA, Elsaway AM, Uversky VN. Redwan EM, et al. Molecules. 2018 Feb 4;23(2):328. doi: 10.3390/molecules23020328. Molecules. 2018. PMID: 29401697 Free PMC article.
-
Oso BJ, Olaoye IF, Ogidi CO. Oso BJ, et al. Arch Razi Inst. 2021 Nov 30;76(5):1191-1202. doi: 10.22092/ari.2020.351605.1526. eCollection 2021 Nov. Arch Razi Inst. 2021. PMID: 35355741 Free PMC article.
-
Interactions by Disorder - A Matter of Context.
Bugge K, Brakti I, Fernandes CB, Dreier JE, Lundsgaard JE, Olsen JG, Skriver K, Kragelund BB. Bugge K, et al. Front Mol Biosci. 2020 Jun 16;7:110. doi: 10.3389/fmolb.2020.00110. eCollection 2020. Front Mol Biosci. 2020. PMID: 32613009 Free PMC article. Review.
-
Sharma R, Sharma A, Patil A, Tsunoda T. Sharma R, et al. BMC Bioinformatics. 2019 Feb 4;19(Suppl 13):378. doi: 10.1186/s12859-018-2396-7. BMC Bioinformatics. 2019. PMID: 30717652 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources