A general scaling law reveals why the largest animals are not the fastest - PubMed
- ️Wed Jun 13 0660
. 2017 Aug;1(8):1116-1122.
doi: 10.1038/s41559-017-0241-4. Epub 2017 Jul 17.
Affiliations
- PMID: 29046579
- DOI: 10.1038/s41559-017-0241-4
A general scaling law reveals why the largest animals are not the fastest
Myriam R Hirt et al. Nat Ecol Evol. 2017 Aug.
Abstract
Speed is the fundamental constraint on animal movement, yet there is no general consensus on the determinants of maximum speed itself. Here, we provide a general scaling model of maximum speed with body mass, which holds across locomotion modes, ecosystem types and taxonomic groups. In contrast to traditional power-law scaling, we predict a hump-shaped relationship resulting from a finite acceleration time for animals, which explains why the largest animals are not the fastest. This model is strongly supported by extensive empirical data (474 species, with body masses ranging from 30 μg to 100 tonnes) from terrestrial as well as aquatic ecosystems. Our approach unravels a fundamental constraint on the upper limit of animal movement, thus enabling a better understanding of realized movement patterns in nature and their multifold ecological consequences.
Comment in
-
Clemente CJ, Bishop PJ. Clemente CJ, et al. Nat Ecol Evol. 2017 Aug;1(8):1058-1059. doi: 10.1038/s41559-017-0264-x. Nat Ecol Evol. 2017. PMID: 29046581 No abstract available.
Similar articles
-
Cloyed CS, Grady JM, Savage VM, Uyeda JC, Dell AI. Cloyed CS, et al. Ecology. 2021 Jul;102(7):e03369. doi: 10.1002/ecy.3369. Epub 2021 May 17. Ecology. 2021. PMID: 33864262
-
Maximum relative speeds of living organisms: Why do bacteria perform as fast as ostriches?
Meyer-Vernet N, Rospars JP. Meyer-Vernet N, et al. Phys Biol. 2016 Nov 15;13(6):066006. doi: 10.1088/1478-3975/13/6/066006. Phys Biol. 2016. PMID: 27848928
-
How scaling approaches can reveal fundamental principles in physiology and biomechanics.
Clemente CJ, Dick TJM. Clemente CJ, et al. J Exp Biol. 2023 Apr 1;226(7):jeb245310. doi: 10.1242/jeb.245310. Epub 2023 Apr 6. J Exp Biol. 2023. PMID: 37021681 Review.
-
The body size and temperature dependence of organismal locomotion.
Cloyed CS, Dell AI. Cloyed CS, et al. Ecology. 2020 Oct;101(10):e03114. doi: 10.1002/ecy.3114. Epub 2020 Jul 23. Ecology. 2020. PMID: 32589797
-
Scaling and power-laws in ecological systems.
Marquet PA, Quiñones RA, Abades S, Labra F, Tognelli M, Arim M, Rivadeneira M. Marquet PA, et al. J Exp Biol. 2005 May;208(Pt 9):1749-69. doi: 10.1242/jeb.01588. J Exp Biol. 2005. PMID: 15855405 Review.
Cited by
-
Body size, shape and ecology in tetrapods.
Maher AE, Burin G, Cox PG, Maddox TW, Maidment SCR, Cooper N, Schachner ER, Bates KT. Maher AE, et al. Nat Commun. 2022 Jul 27;13(1):4340. doi: 10.1038/s41467-022-32028-2. Nat Commun. 2022. PMID: 35896591 Free PMC article.
-
Spin-leap performance by cetaceans is influenced by moment of inertia.
Fish FE, Nicastro AJ, Cardenas KL, Segre PS, Gough WT, Kahane-Rapport SR, St Leger J, Goldbogen JA. Fish FE, et al. J Exp Biol. 2024 Jan 15;227(2):jeb246433. doi: 10.1242/jeb.246433. Epub 2024 Jan 30. J Exp Biol. 2024. PMID: 38149677 Free PMC article.
-
Hamm CA, Hampe O, Schwarz D, Witzmann F, Makovicky PJ, Brochu CA, Reiter R, Asbach P. Hamm CA, et al. Sci Rep. 2020 Nov 3;10(1):18897. doi: 10.1038/s41598-020-75731-0. Sci Rep. 2020. PMID: 33144637 Free PMC article.
-
Hamm M, Drossel B. Hamm M, et al. Sci Rep. 2021 Feb 25;11(1):4632. doi: 10.1038/s41598-021-84077-0. Sci Rep. 2021. PMID: 33633237 Free PMC article.
-
Locomotion rhythm makes power and speed.
Bejan A, Gunes U, Almahmoud H. Bejan A, et al. Sci Rep. 2023 Aug 28;13(1):14018. doi: 10.1038/s41598-023-41023-6. Sci Rep. 2023. PMID: 37640736 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources