De Novo Gene Evolution of Antifreeze Glycoproteins in Codfishes Revealed by Whole Genome Sequence Data - PubMed
- ️Mon Jan 01 2018
De Novo Gene Evolution of Antifreeze Glycoproteins in Codfishes Revealed by Whole Genome Sequence Data
Helle Tessand Baalsrud et al. Mol Biol Evol. 2018.
Abstract
New genes can arise through duplication of a pre-existing gene or de novo from non-coding DNA, providing raw material for evolution of new functions in response to a changing environment. A prime example is the independent evolution of antifreeze glycoprotein genes (afgps) in the Arctic codfishes and Antarctic notothenioids to prevent freezing. However, the highly repetitive nature of these genes complicates studies of their organization. In notothenioids, afgps evolved from an extant gene, yet the evolutionary origin of afgps in codfishes is unknown. Here, we demonstrate that afgps in codfishes have evolved de novo from non-coding DNA 13-18 Ma, coinciding with the cooling of the Northern Hemisphere. Using whole-genome sequence data from several codfishes and notothenioids, we find higher copy number of afgp in species exposed to more severe freezing suggesting a gene dosage effect. Notably, antifreeze function is lost in one lineage of codfishes analogous to the afgp losses in non-Antarctic notothenioids. This indicates that selection can eliminate the antifreeze function when freezing is no longer imminent. In addition, we show that evolution of afgp-assisting antifreeze potentiating protein genes (afpps) in notothenioids coincides with origin and lineage-specific losses of afgp. The origin of afgps in codfishes is one of the first examples of an essential gene born from non-coding DNA in a non-model species. Our study underlines the power of comparative genomics to uncover past molecular signatures of genome evolution, and further highlights the impact of de novo gene origin in response to a changing selection regime.
Keywords: molecular adaptation; orphan genes; teleost fishes.
© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Figures
Similar articles
-
Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod.
Chen L, DeVries AL, Cheng CH. Chen L, et al. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3817-22. doi: 10.1073/pnas.94.8.3817. Proc Natl Acad Sci U S A. 1997. PMID: 9108061 Free PMC article.
-
Zhuang X, Cheng CC. Zhuang X, et al. Genes (Basel). 2021 Nov 9;12(11):1777. doi: 10.3390/genes12111777. Genes (Basel). 2021. PMID: 34828383 Free PMC article.
-
Molecular ecophysiology of Antarctic notothenioid fishes.
Cheng CH, Detrich HW 3rd. Cheng CH, et al. Philos Trans R Soc Lond B Biol Sci. 2007 Dec 29;362(1488):2215-32. doi: 10.1098/rstb.2006.1946. Philos Trans R Soc Lond B Biol Sci. 2007. PMID: 17553777 Free PMC article. Review.
-
Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish.
Chen L, DeVries AL, Cheng CH. Chen L, et al. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3811-6. doi: 10.1073/pnas.94.8.3811. Proc Natl Acad Sci U S A. 1997. PMID: 9108060 Free PMC article.
-
'Antifreeze' glycoproteins from polar fish.
Harding MM, Anderberg PI, Haymet AD. Harding MM, et al. Eur J Biochem. 2003 Apr;270(7):1381-92. doi: 10.1046/j.1432-1033.2003.03488.x. Eur J Biochem. 2003. PMID: 12653993 Review.
Cited by
-
Hannon Bozorgmehr J. Hannon Bozorgmehr J. Mol Genet Genomics. 2024 Feb 5;299(1):6. doi: 10.1007/s00438-023-02090-6. Mol Genet Genomics. 2024. PMID: 38315248
-
Genomics of cold adaptations in the Antarctic notothenioid fish radiation.
Bista I, Wood JMD, Desvignes T, McCarthy SA, Matschiner M, Ning Z, Tracey A, Torrance J, Sims Y, Chow W, Smith M, Oliver K, Haggerty L, Salzburger W, Postlethwait JH, Howe K, Clark MS, William Detrich H 3rd, Christina Cheng CH, Miska EA, Durbin R. Bista I, et al. Nat Commun. 2023 Jun 9;14(1):3412. doi: 10.1038/s41467-023-38567-6. Nat Commun. 2023. PMID: 37296119 Free PMC article.
-
Fahmi M, Kitagawa H, Yasui G, Kubota Y, Ito M. Fahmi M, et al. Evol Bioinform Online. 2021 Mar 15;17:11769343211003079. doi: 10.1177/11769343211003079. eCollection 2021. Evol Bioinform Online. 2021. PMID: 33795929 Free PMC article.
-
Sequence, Structure, and Functional Space of Drosophila De Novo Proteins.
Middendorf L, Ravi Iyengar B, Eicholt LA. Middendorf L, et al. Genome Biol Evol. 2024 Aug 5;16(8):evae176. doi: 10.1093/gbe/evae176. Genome Biol Evol. 2024. PMID: 39212966 Free PMC article.
-
York JM, Zakon HH. York JM, et al. Genome Biol Evol. 2022 Feb 4;14(2):evac009. doi: 10.1093/gbe/evac009. Genome Biol Evol. 2022. PMID: 35106545 Free PMC article.
References
-
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.. 1990. Basic local alignment search tool. J Mol Biol. 215(3):403–410. - PubMed
-
- Bildanova LL, Salina EA, Shumny VK.. 2013. Main properties and evolutionary features of antifreeze proteins. Russ J Genet Appl Res. 3(1):66–82.http://dx.doi.org/10.1134/S207905971301005X - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous