The need for accurate long-term measurements of water vapor in the upper troposphere and lower stratosphere with global coverage - PubMed
The need for accurate long-term measurements of water vapor in the upper troposphere and lower stratosphere with global coverage
Rolf Müller et al. Earths Future. 2016 Feb.
Abstract
Water vapor is the most important greenhouse gas in the atmosphere although changes in carbon dioxide constitute the "control knob" for surface temperatures. While the latter fact is well recognized, resulting in extensive space-borne and ground-based measurement programs for carbon dioxide as detailed in the studies by Keeling et al. (1996), Kuze et al. (2009), and Liu et al. (2014), the need for an accurate characterization of the long-term changes in upper tropospheric and lower stratospheric (UTLS) water vapor has not yet resulted in sufficiently extensive long-term international measurement programs (although first steps have been taken). Here, we argue for the implementation of a long-term balloon-borne measurement program for UTLS water vapor covering the entire globe that will likely have to be sustained for hundreds of years.
Figures

Potential temperature-based (10 K bins) frequency distribution of water vapor mixing ratios from 23 aircraft campaigns measured with the Fast In-situ Stratospheric Hygrometer (FISH) hygrometer [Meyer et al., 2015] from 1997 to 2014 divided into three latitude regimes: tropical (30°S to 30°N), sub-tropical (60°S to 30°S and 30°N to 60°N), and polar regions (90°S to 60°S and 60°N to 90°N). The number of data points (measurements every second) is given at the top right of the respective panel.

Stratospheric water vapor between 1981 and 2014 from Boulder sonde data (Hurst et al., 2011; Kunz et al., 2013). Top panel (a) shows data for 75–85 hPa (≈18 km); the panels below show subsets of the data selected according to the altitude level of the tropopause at the individual sounding. Second panel (b) shows data for the tropical domain (tropopause greater than 14 km); third panel (c) for a transitional domain (tropopause between 14 and 12 km); and bottom panel (d) data for the extratropical domain (tropopause below 12 km). The black line in the top panel shows water vapor monthly means; 2-year running means in all panels are shown in orange. Also shown are corresponding HALOE data for 1991–2005 (zonal average of the latitude band 35°N to 45°N); the white line shows the 2-year running mean; the range of two standard deviations around the mean is shown as gray shading [Kunz et al., 2013]. Note that around the year 2000, no data are available for tropopause greater than 14 km (panel b). (Figure adapted from Kunz et al. [2013]; see reference for further information on the analysis).
Similar articles
-
Hurst DF, Read WG, Vömel H, Selkirk HB, Rosenlof KH, Davis SM, Hall EG, Jordan AF, Oltmans SJ. Hurst DF, et al. Atmos Meas Tech. 2016 Sep 8;9(9):4447-4457. doi: 10.5194/amt-9-4447-2016. Atmos Meas Tech. 2016. PMID: 28966694 Free PMC article.
-
Szakáll M, Bozóki Z, Kraemer M, Spelten N, Moehler O, Schurath U. Szakáll M, et al. Environ Sci Technol. 2001 Dec 15;35(24):4881-5. doi: 10.1021/es015564x. Environ Sci Technol. 2001. PMID: 11775165
-
Detection of stratospheric ozone intrusions by windprofiler radars.
Hocking WK, Carey-Smith T, Tarasick DW, Argall PS, Strong K, Rochon Y, Zawadzki I, Taylor PA. Hocking WK, et al. Nature. 2007 Nov 8;450(7167):281-4. doi: 10.1038/nature06312. Nature. 2007. PMID: 17994096
-
Changes in tropospheric composition and air quality due to stratospheric ozone depletion.
Solomon KR, Tang X, Wilson SR, Zanis P, Bais AF. Solomon KR, et al. Photochem Photobiol Sci. 2003 Jan;2(1):62-7. doi: 10.1039/b211086e. Photochem Photobiol Sci. 2003. PMID: 12659540 Review.
-
An overview of geoengineering of climate using stratospheric sulphate aerosols.
Rasch PJ, Tilmes S, Turco RP, Robock A, Oman L, Chen CC, Stenchikov GL, Garcia RR. Rasch PJ, et al. Philos Trans A Math Phys Eng Sci. 2008 Nov 13;366(1882):4007-37. doi: 10.1098/rsta.2008.0131. Philos Trans A Math Phys Eng Sci. 2008. PMID: 18757276 Review.
Cited by
-
Advancements, measurement uncertainties, and recent comparisons of the NOAA frost point hygrometer.
Hall EG, Jordan AF, Hurst DF, Oltmans SJ, Vömel H, Kühnreich B, Ebert V. Hall EG, et al. Atmos Meas Tech. 2016;9(9):4295-4310. doi: 10.5194/amt-9-4295-2016. Epub 2016 Sep 5. Atmos Meas Tech. 2016. PMID: 28845201 Free PMC article.
-
Davis SM, Rosenlof KH, Hassler B, Hurst DF, Read WG, Vömel H, Selkirk H, Fujiwara M, Damadeo R. Davis SM, et al. Earth Syst Sci Data. 2016;8(2):461-490. doi: 10.5194/essd-8-461-2016. Epub 2016 Sep 28. Earth Syst Sci Data. 2016. PMID: 28966693 Free PMC article.
-
Hurst DF, Read WG, Vömel H, Selkirk HB, Rosenlof KH, Davis SM, Hall EG, Jordan AF, Oltmans SJ. Hurst DF, et al. Atmos Meas Tech. 2016 Sep 8;9(9):4447-4457. doi: 10.5194/amt-9-4447-2016. Atmos Meas Tech. 2016. PMID: 28966694 Free PMC article.
References
-
- Brabec M, Wienhold FG, Luo BP, Vömel H, Immler F, Steiner P, Hausammann E, Weers U, Peter T. Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling. Atmos Chem Phys. 2012;12(19):9135–9148. doi: 10.5194/acp-12-9135-2012. - DOI
-
- Brogniez H, Clain G, Roca R. Validation of upper-tropospheric humidity from SAPHIR on board Megha-Tropiques using tropical soundings. J Appl Meteorol Climatol. 2015;54:896–908. doi: 10.1175/JAMC-D-14-0096.1. - DOI
-
- Davis SM, Rosenlof KH, Hurst DF. Stratospheric water vapor. Bull Am Meteorol Soc. 2015;96(7):S46–S48.
LinkOut - more resources
Full Text Sources
Other Literature Sources