Effect of hyperthyroidism on fibre-type composition, fibre area, glycogen content and enzyme activity in human skeletal muscle - PubMed
Effect of hyperthyroidism on fibre-type composition, fibre area, glycogen content and enzyme activity in human skeletal muscle
F Celsing et al. Clin Physiol. 1986 Apr.
Abstract
Seven hyperthyroid patients were studied by repeated muscle biopsies (vastus lateralis) before and after a period of medical treatment which averaged 10 months. The biopsies were analysed with regard to fibre-type composition, fibre area, capillary density, glycogen content and enzyme activities representing the glycolytic capacity (hexokinase, 6-phosphofructokinase), oxidative capacity (oxoglutarate dehydrogenase, citrate synthase) and Ca2+- and Mg2+-stimulated ATPase in muscle. In the pretreatment biopsy (hyperthyroid state), there was a significantly lower proportion of type I fibres (30% vs. 41%), a higher capillary density (23%), lower glycogen content (33%), and higher hexokinase activity (32%) compared with the post-treatment biopsy. No significant changes in the activity of the remaining enzymes were observed. The present study indicates that hyperthyroidism induces a transformation from type I to type II fibres in human skeletal muscle. The increase in hexokinase activity probably reflects a higher glucose utilization by skeletal muscle in order to compensate partially for the reduced glycogen content.
Similar articles
-
Serrano AL, Quiroz-Rothe E, Rivero JL. Serrano AL, et al. Pflugers Arch. 2000 Dec;441(2-3):263-74. doi: 10.1007/s004240000408. Pflugers Arch. 2000. PMID: 11211112
-
Church JM, Choong SY, Hill GL. Church JM, et al. Br J Surg. 1984 Jul;71(7):563-9. doi: 10.1002/bjs.1800710732. Br J Surg. 1984. PMID: 6329397
-
Capó LA, Sillau AH. Capó LA, et al. J Physiol. 1983 Sep;342:1-14. doi: 10.1113/jphysiol.1983.sp014835. J Physiol. 1983. PMID: 6226777 Free PMC article.
-
Bylund AC, Bjurö T, Cederblad G, Holm J, Lundholm K, Sjöstroöm M, Angquist KA, Scherstén T. Bylund AC, et al. Eur J Appl Physiol Occup Physiol. 1977 Mar 15;36(3):151-69. doi: 10.1007/BF00421747. Eur J Appl Physiol Occup Physiol. 1977. PMID: 323004 Review.
Cited by
-
Dimitriadis GD, Leighton B, Vlachonikolis IG, Parry-Billings M, Challiss RA, West D, Newsholme EA. Dimitriadis GD, et al. Biochem J. 1988 Jul 1;253(1):87-92. doi: 10.1042/bj2530087. Biochem J. 1988. PMID: 3048254 Free PMC article.
-
Skeletal muscle metabolism during exercise and recovery in patients with respiratory failure.
Thompson CH, Davies RJ, Kemp GJ, Taylor DJ, Radda GK, Rajagopalan B. Thompson CH, et al. Thorax. 1993 May;48(5):486-90. doi: 10.1136/thx.48.5.486. Thorax. 1993. PMID: 8322233 Free PMC article.
-
Interactions between thyroid disorders and kidney disease.
Basu G, Mohapatra A. Basu G, et al. Indian J Endocrinol Metab. 2012 Mar;16(2):204-13. doi: 10.4103/2230-8210.93737. Indian J Endocrinol Metab. 2012. PMID: 22470856 Free PMC article.
-
Szczęsny P, Świerkocka K, Olesińska M. Szczęsny P, et al. Reumatologia. 2018;56(5):307-315. doi: 10.5114/reum.2018.79502. Epub 2018 Oct 31. Reumatologia. 2018. PMID: 30505013 Free PMC article. Review.
-
Thyroid status and exercise tolerance. Cardiovascular and metabolic considerations.
McAllister RM, Delp MD, Laughlin MH. McAllister RM, et al. Sports Med. 1995 Sep;20(3):189-98. doi: 10.2165/00007256-199520030-00005. Sports Med. 1995. PMID: 8571001 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous