Improving Sequence-Based Prediction of Protein-Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method - PubMed
- ️Mon Jan 01 2018
. 2018 Jul 23;58(7):1459-1468.
doi: 10.1021/acs.jcim.8b00019. Epub 2018 Jun 25.
Affiliations
- PMID: 29895149
- DOI: 10.1021/acs.jcim.8b00019
Improving Sequence-Based Prediction of Protein-Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method
Zijuan Zhao et al. J Chem Inf Model. 2018.
Abstract
Protein-peptide interaction is crucial for many cellular processes. It is difficult to determine the interaction by experiments as peptides are often very flexible in structure. Accurate sequence-based prediction of peptide-binding residues can facilitate the study of this interaction. In this work, we developed two novel sequence-based methods SVMpep and PepBind to identify the peptide-binding residues. Recent studies demonstrate that the protein-peptide binding is closely associated with intrinsic disorder. We thus introduced intrinsic disorder in our feature design and developed the ab initio method SVMpep. Experiments show that intrinsic disorder contributes to 1.2-5.2% improvement in area under the receiver operating characteristic curve (AUC). Comparison to the recent sequence-based method SPRINT-Seq reveals that SVMpep improves the AUC and Matthews correlation coefficient (MCC) by at least 7.7% and 70%, respectively. In addition, by combining SVMpep with two template-based methods S-SITE and TM-SITE, we next proposed the consensus-based method PepBind. Remarkably, compared with the latest structure-based method SPRINT-Str, PepBind improves the AUC and MCC by 1.7% and 28.3%, respectively, on the same independent test set of SPRINT-Str. The success of PepBind is attributed to the improved prediction of the ab initio method SVMpep by introducing intrinsic disorder and the consensus prediction by combining three complementary methods. A web server that implements the proposed methods is freely available at http://yanglab.nankai.edu.cn/PepBind/ .
Similar articles
-
CoABind: a novel algorithm for Coenzyme A (CoA)- and CoA derivatives-binding residues prediction.
Meng Q, Peng Z, Yang J. Meng Q, et al. Bioinformatics. 2018 Aug 1;34(15):2598-2604. doi: 10.1093/bioinformatics/bty162. Bioinformatics. 2018. PMID: 29547921
-
Structure-based prediction of protein- peptide binding regions using Random Forest.
Taherzadeh G, Zhou Y, Liew AW, Yang Y. Taherzadeh G, et al. Bioinformatics. 2018 Feb 1;34(3):477-484. doi: 10.1093/bioinformatics/btx614. Bioinformatics. 2018. PMID: 29028926
-
Su H, Liu M, Sun S, Peng Z, Yang J. Su H, et al. Bioinformatics. 2019 Mar 15;35(6):930-936. doi: 10.1093/bioinformatics/bty756. Bioinformatics. 2019. PMID: 30169574
-
Xia J, Peng Z, Qi D, Mu H, Yang J. Xia J, et al. Bioinformatics. 2017 Mar 15;33(6):863-870. doi: 10.1093/bioinformatics/btw768. Bioinformatics. 2017. PMID: 28039166
-
A glance into the evolution of template-free protein structure prediction methodologies.
Dhingra S, Sowdhamini R, Cadet F, Offmann B. Dhingra S, et al. Biochimie. 2020 Aug;175:85-92. doi: 10.1016/j.biochi.2020.04.026. Epub 2020 May 15. Biochimie. 2020. PMID: 32417458 Review.
Cited by
-
Fang Y, Jiang Y, Wei L, Ma Q, Ren Z, Yuan Q, Wei DQ. Fang Y, et al. Bioinformatics. 2023 Dec 1;39(12):btad718. doi: 10.1093/bioinformatics/btad718. Bioinformatics. 2023. PMID: 38015872 Free PMC article.
-
Chandra A, Sharma A, Dehzangi I, Tsunoda T, Sattar A. Chandra A, et al. Sci Rep. 2023 Nov 28;13(1):20882. doi: 10.1038/s41598-023-47624-5. Sci Rep. 2023. PMID: 38016996 Free PMC article.
-
Efficient 3D conformer generation of cyclic peptides formed by a disulfide bond.
Tao H, Wu Q, Zhao X, Lin P, Huang SY. Tao H, et al. J Cheminform. 2022 May 3;14(1):26. doi: 10.1186/s13321-022-00605-8. J Cheminform. 2022. PMID: 35505401 Free PMC article.
-
Song R, Cao B, Peng Z, Oldfield CJ, Kurgan L, Wong KC, Yang J. Song R, et al. Biomolecules. 2021 Sep 9;11(9):1337. doi: 10.3390/biom11091337. Biomolecules. 2021. PMID: 34572550 Free PMC article.
-
APOD: accurate sequence-based predictor of disordered flexible linkers.
Peng Z, Xing Q, Kurgan L. Peng Z, et al. Bioinformatics. 2020 Dec 30;36(Suppl_2):i754-i761. doi: 10.1093/bioinformatics/btaa808. Bioinformatics. 2020. PMID: 33381830 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources