The genome of the offspring of a Neanderthal mother and a Denisovan father - PubMed
. 2018 Sep;561(7721):113-116.
doi: 10.1038/s41586-018-0455-x. Epub 2018 Aug 22.
Fabrizio Mafessoni 2 , Benjamin Vernot 2 , Cesare de Filippo 2 , Steffi Grote 2 , Bence Viola 3 4 , Mateja Hajdinjak 2 , Stéphane Peyrégne 2 , Sarah Nagel 2 , Samantha Brown 5 , Katerina Douka 5 6 , Tom Higham 6 , Maxim B Kozlikin 4 , Michael V Shunkov 4 7 , Anatoly P Derevianko 4 , Janet Kelso 2 , Matthias Meyer 2 , Kay Prüfer 2 , Svante Pääbo 8
Affiliations
- PMID: 30135579
- PMCID: PMC6130845
- DOI: 10.1038/s41586-018-0455-x
The genome of the offspring of a Neanderthal mother and a Denisovan father
Viviane Slon et al. Nature. 2018 Sep.
Abstract
Neanderthals and Denisovans are extinct groups of hominins that separated from each other more than 390,000 years ago1,2. Here we present the genome of 'Denisova 11', a bone fragment from Denisova Cave (Russia)3 and show that it comes from an individual who had a Neanderthal mother and a Denisovan father. The father, whose genome bears traces of Neanderthal ancestry, came from a population related to a later Denisovan found in the cave4-6. The mother came from a population more closely related to Neanderthals who lived later in Europe2,7 than to an earlier Neanderthal found in Denisova Cave8, suggesting that migrations of Neanderthals between eastern and western Eurasia occurred sometime after 120,000 years ago. The finding of a first-generation Neanderthal-Denisovan offspring among the small number of archaic specimens sequenced to date suggests that mixing between Late Pleistocene hominin groups was common when they met.
Conflict of interest statement
The authors declare no competing financial interests.
Figures


a. Percentages calculated for two random DNA fragments from Denisova 11 (leftmost column) and from simulated F1, F2, Neandertal (NF0) or Denisovan (DF0) genomes (columns 2-5). b. Proportions of sites for the simulated genotypes, prior to sampling two fragments.

Y-axis shows –log(p-value) of the deviation of Neandertal and Denisovan allele counts from the genome-wide average (chi-square test of goodness-of-fit; see SI 7); color shows the proportion of alleles matching the Neandertal state (%N) within each 1 Mb window.

Full or abbreviated names of specimens are shown near each figure. Asterisks indicate that the genome was sequenced to high-coverage, a question mark that the individual is of unknown sex. Note that Oase 1 has recent Neandertal ancestry (blue dot) that is beyond the amount seen in non-Africans. Denisova 3 has also been found to carry a small percentage of Neandertal ancestry. Data taken from ,,–,–,–.

a. Percentage of DNA fragments in Denisova 11 carrying derived alleles seen on each branch of a tree relating a Neandertal, a Denisovan and a present-day human genome. b. Distribution of heterozygosity per chromosome in two Neandertals (blue), a Denisovan (red), Denisova 11 (purple) and present-day humans (N=235 non-African [yellow] and N=44 African individuals [orange] from 28), and the expectation for a Neandertal-Denisovan F1 offspring (grey). The violins represent the distribution from the minimum and maximum heterozygosity values for the autosomes of each archaic hominin and of present-day humans (n=5,170 pairs of chromosomes for non-Africans and n=968 for Africans). White squares represent autosome-wide estimates for the archaic hominins, and the average of estimates across individuals for present-day humans. c. Percentage of sites at which two sampled DNA fragments both carry “Neandertal alleles” (blue), “Denisovan alleles” (red), or one allele of each type (purple); and the expectations for an offspring of a Neandertal and a Denisovan (F1), of two F1 parents (F2), and of an F1 and a Denisovan (F1xD). The expected proportions for simulated Neandertal and Denisovan genomes are shown in Extended Data Figure 2.

Positions where one randomly drawn DNA fragment matches the Neandertal genome and another matches the Denisovan genome are marked in purple. Positions are marked in blue if both DNA fragments match the Neandertal genome, and in red if both match the Denisovan genome. Black lines indicate centromeres. The inset shows one region out of five (green boxes) where both chromosomes carry predominantly Neandertal-like alleles. For comparison, the distribution of alleles in this region is shown for a Neandertal genome (Goyet Q56-1).

Diamonds indicate ages of specimens estimated via branch shortening; circles indicate population split times estimated from allele sharing between Denisova 11 and the high-coverage genomes (blue and red) and among the three high-coverage genomes (yellow, from 2); the arrow indicates Neandertal gene flow into Denisovans. Markers indicate the means of these estimates, error bars indicate 95% confidence intervals (CIs) based on block jackknife resampling across the genome (n=523 blocks). Note that the CIs do not take the uncertainty with respect to population size, mutation rates or generation times into account. Ages before present are based on a human-chimpanzee divergence of 13 million years,.
Comment in
-
The girl with Neanderthal and Denisovan parents.
Clyde D. Clyde D. Nat Rev Genet. 2018 Nov;19(11):668-669. doi: 10.1038/s41576-018-0054-6. Nat Rev Genet. 2018. PMID: 30209350 No abstract available.
Similar articles
-
Greer C, Bhakta H, Ghanem L, Refai F, Linn E, Avella M. Greer C, et al. Hum Reprod. 2021 Feb 18;36(3):734-755. doi: 10.1093/humrep/deaa347. Hum Reprod. 2021. PMID: 33417716
-
Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave.
Zavala EI, Jacobs Z, Vernot B, Shunkov MV, Kozlikin MB, Derevianko AP, Essel E, de Fillipo C, Nagel S, Richter J, Romagné F, Schmidt A, Li B, O'Gorman K, Slon V, Kelso J, Pääbo S, Roberts RG, Meyer M. Zavala EI, et al. Nature. 2021 Jul;595(7867):399-403. doi: 10.1038/s41586-021-03675-0. Epub 2021 Jun 23. Nature. 2021. PMID: 34163072 Free PMC article.
-
Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave.
Douka K, Slon V, Jacobs Z, Ramsey CB, Shunkov MV, Derevianko AP, Mafessoni F, Kozlikin MB, Li B, Grün R, Comeskey D, Devièse T, Brown S, Viola B, Kinsley L, Buckley M, Meyer M, Roberts RG, Pääbo S, Kelso J, Higham T. Douka K, et al. Nature. 2019 Jan;565(7741):640-644. doi: 10.1038/s41586-018-0870-z. Epub 2019 Jan 30. Nature. 2019. PMID: 30700871
-
Archaic hominin introgression into modern human genomes.
Gokcumen O. Gokcumen O. Am J Phys Anthropol. 2020 May;171 Suppl 70:60-73. doi: 10.1002/ajpa.23951. Epub 2019 Nov 8. Am J Phys Anthropol. 2020. PMID: 31702050 Review.
-
Archaic admixture in human history.
Wall JD, Yoshihara Caldeira Brandt D. Wall JD, et al. Curr Opin Genet Dev. 2016 Dec;41:93-97. doi: 10.1016/j.gde.2016.07.002. Epub 2016 Sep 20. Curr Opin Genet Dev. 2016. PMID: 27662059 Review.
Cited by
-
Our Tangled Family Tree: New Genomic Methods Offer Insight into the Legacy of Archaic Admixture.
Ahlquist KD, Bañuelos MM, Funk A, Lai J, Rong S, Villanea FA, Witt KE. Ahlquist KD, et al. Genome Biol Evol. 2021 Jul 6;13(7):evab115. doi: 10.1093/gbe/evab115. Genome Biol Evol. 2021. PMID: 34028527 Free PMC article. Review.
-
Genetic insights into the social organization of Neanderthals.
Skov L, Peyrégne S, Popli D, Iasi LNM, Devièse T, Slon V, Zavala EI, Hajdinjak M, Sümer AP, Grote S, Bossoms Mesa A, López Herráez D, Nickel B, Nagel S, Richter J, Essel E, Gansauge M, Schmidt A, Korlević P, Comeskey D, Derevianko AP, Kharevich A, Markin SV, Talamo S, Douka K, Krajcarz MT, Roberts RG, Higham T, Viola B, Krivoshapkin AI, Kolobova KA, Kelso J, Meyer M, Pääbo S, Peter BM. Skov L, et al. Nature. 2022 Oct;610(7932):519-525. doi: 10.1038/s41586-022-05283-y. Epub 2022 Oct 19. Nature. 2022. PMID: 36261548 Free PMC article.
-
Personhood Begins at Birth: The Rational Foundation for Abortion Policy in a Secular State.
Wall LL, Brown D. Wall LL, et al. J Bioeth Inq. 2024 Dec;21(4):751-769. doi: 10.1007/s11673-024-10352-0. Epub 2024 Aug 22. J Bioeth Inq. 2024. PMID: 39172346
-
Predicting Archaic Hominin Phenotypes from Genomic Data.
Brand CM, Colbran LL, Capra JA. Brand CM, et al. Annu Rev Genomics Hum Genet. 2022 Aug 31;23:591-612. doi: 10.1146/annurev-genom-111521-121903. Epub 2022 Apr 19. Annu Rev Genomics Hum Genet. 2022. PMID: 35440148 Free PMC article. Review.
-
A genetic analysis of the Gibraltar Neanderthals.
Bokelmann L, Hajdinjak M, Peyrégne S, Brace S, Essel E, de Filippo C, Glocke I, Grote S, Mafessoni F, Nagel S, Kelso J, Prüfer K, Vernot B, Barnes I, Pääbo S, Meyer M, Stringer C. Bokelmann L, et al. Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15610-15615. doi: 10.1073/pnas.1903984116. Epub 2019 Jul 15. Proc Natl Acad Sci U S A. 2019. PMID: 31308224 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous