Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives - PubMed
Review
. 2019 Jan;103(1):143-157.
doi: 10.1007/s00253-018-9483-6. Epub 2018 Nov 5.
Affiliations
- PMID: 30397765
- DOI: 10.1007/s00253-018-9483-6
Review
Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives
Christina Andreeßen et al. Appl Microbiol Biotechnol. 2019 Jan.
Abstract
During the last decades, biopolymers experienced a renaissance. The increasing limitation of fossil resources in combination with a public demand for environmental-friendly and sustainable processes has led to the formation of a market for biobased plastics. Especially non-biodegradable bioplastics are very interesting materials, as they combine the benefits of reduced carbon footprint during production and increased resource efficiency with the persistence to microbial degradation. Consequently, persistent biomass-derived plastic materials are highly promising to substitute conventional fossil-based plastics in applications, which require durability and longevity. Non-biodegradable bioplastics derived from renewable resources represent 57% of all bioplastics with partially biobased polyethylene terephthalate currently leading the market, followed by biobased polyamides and fully biomass-derived polyethylene. An exceptional biopolymer with thermoplastic properties was discovered only two decades ago, when-for the first time-polythioesters were synthesized by microbial fermentation. Though synthesized by bacteria, it turned out that polythioesters are non-biodegradable by microorganisms in contrast to all other biopolymers and thus, represent a novel non-biodegradable bioplastic material. This review gives an overview about the recent development and progress regarding bioplastics with special focus on persistent bioplastics. We describe the generation of the respective monomers from biomass-derived substrates and summarize the current status of production, which range from the laboratory-scale up to large-scale industrial processes.
Keywords: Bioplastic; Non-biodegradable biopolymer; Polyamides; Polyethylene; Polyethylene 2,5-furandicarboxylate; Polyethylene terephthalate; Polypropylene; Polythioester; Polytrimethylene 2,5-furandicarboxylate; Polytrimethylene terephthalate; Polyurethanes.
Similar articles
-
Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review.
Polman EMN, Gruter GM, Parsons JR, Tietema A. Polman EMN, et al. Sci Total Environ. 2021 Jan 20;753:141953. doi: 10.1016/j.scitotenv.2020.141953. Epub 2020 Aug 25. Sci Total Environ. 2021. PMID: 32896737 Review.
-
Ali Z, Abdullah M, Yasin MT, Amanat K, Ahmad K, Ahmed I, Qaisrani MM, Khan J. Ali Z, et al. Environ Res. 2024 Mar 1;244:117949. doi: 10.1016/j.envres.2023.117949. Epub 2023 Dec 17. Environ Res. 2024. PMID: 38109961 Review.
-
Degli Esposti M, Morselli D, Fava F, Bertin L, Cavani F, Viaggi D, Fabbri P. Degli Esposti M, et al. FEBS Open Bio. 2021 Apr;11(4):967-983. doi: 10.1002/2211-5463.13119. FEBS Open Bio. 2021. PMID: 33595898 Free PMC article. Review.
-
Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock.
Thomas AP, Kasa VP, Dubey BK, Sen R, Sarmah AK. Thomas AP, et al. Sci Total Environ. 2023 Dec 15;904:167243. doi: 10.1016/j.scitotenv.2023.167243. Epub 2023 Sep 21. Sci Total Environ. 2023. PMID: 37741416 Review.
-
Albuquerque PBS, Malafaia CB. Albuquerque PBS, et al. Int J Biol Macromol. 2018 Feb;107(Pt A):615-625. doi: 10.1016/j.ijbiomac.2017.09.026. Epub 2017 Sep 12. Int J Biol Macromol. 2018. PMID: 28916381 Review.
Cited by
-
Ballerstedt H, Tiso T, Wierckx N, Wei R, Averous L, Bornscheuer U, O'Connor K, Floehr T, Jupke A, Klankermayer J, Liu L, de Lorenzo V, Narancic T, Nogales J, Perrin R, Pollet E, Prieto A, Casey W, Haarmann T, Sarbu A, Schwaneberg U, Xin F, Dong W, Xing J, Chen GQ, Tan T, Jiang M, Blank LM. Ballerstedt H, et al. Environ Sci Eur. 2021;33(1):99. doi: 10.1186/s12302-021-00536-5. Epub 2021 Aug 21. Environ Sci Eur. 2021. PMID: 34458054 Free PMC article.
-
Joshi JS, Langwald SV, Ehrmann A, Sabantina L. Joshi JS, et al. Polymers (Basel). 2024 Feb 23;16(5):610. doi: 10.3390/polym16050610. Polymers (Basel). 2024. PMID: 38475294 Free PMC article. Review.
-
Biodegradable Conducting Polymer-Based Composites for Biomedical Applications-A Review.
Khan T, Vadivel G, Ramasamy B, Murugesan G, Sebaey TA. Khan T, et al. Polymers (Basel). 2024 May 29;16(11):1533. doi: 10.3390/polym16111533. Polymers (Basel). 2024. PMID: 38891481 Free PMC article. Review.
-
Bioplastic production in terms of life cycle assessment: A state-of-the-art review.
Ali SS, Abdelkarim EA, Elsamahy T, Al-Tohamy R, Li F, Kornaros M, Zuorro A, Zhu D, Sun J. Ali SS, et al. Environ Sci Ecotechnol. 2023 Feb 19;15:100254. doi: 10.1016/j.ese.2023.100254. eCollection 2023 Jul. Environ Sci Ecotechnol. 2023. PMID: 37020495 Free PMC article. Review.
-
Mandal M, Roy A, Mitra D, Sarkar A. Mandal M, et al. Curr Res Microb Sci. 2024 Sep 4;7:100274. doi: 10.1016/j.crmicr.2024.100274. eCollection 2024. Curr Res Microb Sci. 2024. PMID: 39310303 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources