Cyanogenesis and the role of cyanogenic compounds in insects - PubMed
Review
Cyanogenesis and the role of cyanogenic compounds in insects
A Nahrstedt. Ciba Found Symp. 1988.
Abstract
The cyanogenic system comprising cyanogenic glycosides, hydroxynitriles (cyanohydrins), beta-glucosidases and nitrile lyases is widespread in the plant kingdom but also occurs in several arthropods. A few insects were found to contain mandelonitrile and, in one case, a small amount of prunasin was detected. Cardiospermin and gynocardin occur in one insect, and the cyanoglucosides linamarin and lotaustralin are found in several species of the lepidopterans. Biosynthesis of these cyanoglucosides has been studied in two of these species and their sequestration has been investigated in one species. For Zygaena trifolii the presence of the entire cyanide-handling system indicates an important function of these compounds. So far, their function as defensive compounds seems likely on the basis of their ability to generate HCN and their localization, and appears to be indicated by some feeding experiments with potential predators.
Similar articles
-
Cyanogenesis in plants and arthropods.
Zagrobelny M, Bak S, Møller BL. Zagrobelny M, et al. Phytochemistry. 2008 May;69(7):1457-68. doi: 10.1016/j.phytochem.2008.02.019. Epub 2008 Mar 18. Phytochemistry. 2008. PMID: 18353406 Review.
-
Oximes, nitriles and 2-hydroxynitriles as precursors in the biosynthesis of cyanogenic glucosides.
Tapper BA, Butler GW. Tapper BA, et al. Biochem J. 1971 Oct;124(5):935-41. doi: 10.1042/bj1240935. Biochem J. 1971. PMID: 5131015 Free PMC article.
-
Pentzold S, Jensen MK, Matthes A, Olsen CE, Petersen BL, Clausen H, Møller BL, Bak S, Zagrobelny M. Pentzold S, et al. R Soc Open Sci. 2017 Jun 28;4(6):170262. doi: 10.1098/rsos.170262. eCollection 2017 Jun. R Soc Open Sci. 2017. PMID: 28680679 Free PMC article.
-
Cyanogenesis, a Plant Defence Strategy against Herbivores.
Boter M, Diaz I. Boter M, et al. Int J Mol Sci. 2023 Apr 10;24(8):6982. doi: 10.3390/ijms24086982. Int J Mol Sci. 2023. PMID: 37108149 Free PMC article. Review.
-
Cyanogenic glucosides and plant-insect interactions.
Zagrobelny M, Bak S, Rasmussen AV, Jørgensen B, Naumann CM, Lindberg Møller B. Zagrobelny M, et al. Phytochemistry. 2004 Feb;65(3):293-306. doi: 10.1016/j.phytochem.2003.10.016. Phytochemistry. 2004. PMID: 14751300 Review.
Cited by
-
Salgado AL, Suchan T, Pellissier L, Rasmann S, Ducrest AL, Alvarez N. Salgado AL, et al. R Soc Open Sci. 2016 Sep 28;3(9):160226. doi: 10.1098/rsos.160226. eCollection 2016 Sep. R Soc Open Sci. 2016. PMID: 27703688 Free PMC article.
-
Kadow D, Voß K, Selmar D, Lieberei R. Kadow D, et al. Ann Bot. 2012 Jun;109(7):1253-62. doi: 10.1093/aob/mcs057. Epub 2012 Mar 25. Ann Bot. 2012. PMID: 22451599 Free PMC article.
-
Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development.
Zidenga T, Siritunga D, Sayre RT. Zidenga T, et al. Front Plant Sci. 2017 Feb 24;8:220. doi: 10.3389/fpls.2017.00220. eCollection 2017. Front Plant Sci. 2017. PMID: 28286506 Free PMC article.
-
Storage and release of hydrogen cyanide in a chelicerate (Oribatula tibialis).
Brückner A, Raspotnig G, Wehner K, Meusinger R, Norton RA, Heethoff M. Brückner A, et al. Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3469-3472. doi: 10.1073/pnas.1618327114. Epub 2017 Mar 13. Proc Natl Acad Sci U S A. 2017. PMID: 28289203 Free PMC article.
-
Shlichta JG, Glauser G, Benrey B. Shlichta JG, et al. J Chem Ecol. 2014 May;40(5):468-75. doi: 10.1007/s10886-014-0434-0. Epub 2014 May 27. J Chem Ecol. 2014. PMID: 24863488