Electrospun Polyvinyl Alcohol/d-Limonene Fibers Prepared by Ultrasonic Processing for Antibacterial Active Packaging Material - PubMed
- ️Tue Jan 01 2019
Electrospun Polyvinyl Alcohol/d-Limonene Fibers Prepared by Ultrasonic Processing for Antibacterial Active Packaging Material
Weijie Lan et al. Molecules. 2019.
Abstract
Novel fibers containing different ratios of PVA and d-limonene were fabricated using electrospinning for antibacterial active packaging applications. The PVA/d-limonene fibers were thoroughly characterized using a scanning electron microscope, fourier-transform infrared spectrometry, thermal gravimetry, differential scanning calorimetry, tensile tests, and oxygen permeability tests. The results of these analyses showed that the highest tensile strength and elongation at break values of 3.87 ± 0.25 MPa and 55.62 ± 2.93%, respectively, were achieved for a PVA/d-limonene ratio of 7:3 (v/v) and an ultrasonication time of 15 min during processing. This material also showed the lowest oxygen permeation and the best degradability and bacteriostatic properties of all samples.
Keywords: antibacterial active packaging; d-limonene; polyvinyl alcohol.
Conflict of interest statement
The authors declare no conflict of interest.
Figures

FTIR spectra of (a) pure PVA and pure
d-limonene, and (b) PVA/
d-limonene-5/5 fibers processed with different ultrasonication times.

DSC curves of cooling.

TGA curves of PVA/
d-limonene fibers.

(a) SEM images of different PVA/
d-limonene fibers; (b) average diameters of different fibers.

(a) SEM images of different PVA/
d-limonene fibers; (b) average diameters of different fibers.

(a) Tensile strength and (b) elongation of PVA/
d-limonene fibers with different volume ratios and ultrasonic processing times.

Oxygen permeability of different fibers with different ultrasonic times.

Degradation percentage of different fibers with different ultrasonic times.

Effect of PVA/
d-limonene fibers on the growth inhibition (%) of S. aureus and E. coli.
Similar articles
-
Lan W, Wang S, Chen M, Sameen DE, Lee K, Liu Y. Lan W, et al. Int J Biol Macromol. 2020 Feb 15;145:722-732. doi: 10.1016/j.ijbiomac.2019.12.230. Epub 2019 Dec 27. Int J Biol Macromol. 2020. PMID: 31887375
-
Liu Y, Wang S, Lan W. Liu Y, et al. Int J Biol Macromol. 2018 Feb;107(Pt A):848-854. doi: 10.1016/j.ijbiomac.2017.09.044. Epub 2017 Sep 15. Int J Biol Macromol. 2018. PMID: 28923566
-
Sobolčiak P, Ali A, Hassan MK, Helal MI, Tanvir A, Popelka A, Al-Maadeed MA, Krupa I, Mahmoud KA. Sobolčiak P, et al. PLoS One. 2017 Aug 30;12(8):e0183705. doi: 10.1371/journal.pone.0183705. eCollection 2017. PLoS One. 2017. PMID: 28854241 Free PMC article.
-
Pan J, Ai F, Shao P, Chen H, Gao H. Pan J, et al. Food Chem. 2019 Dec 1;300:125249. doi: 10.1016/j.foodchem.2019.125249. Epub 2019 Jul 24. Food Chem. 2019. PMID: 31352291
-
Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications.
Topuz F, Uyar T. Topuz F, et al. Food Res Int. 2020 Apr;130:108927. doi: 10.1016/j.foodres.2019.108927. Epub 2019 Dec 18. Food Res Int. 2020. PMID: 32156376 Review.
Cited by
-
Coelho SC, Estevinho BN. Coelho SC, et al. Molecules. 2023 Apr 20;28(8):3592. doi: 10.3390/molecules28083592. Molecules. 2023. PMID: 37110823 Free PMC article. Review.
-
Antimicrobial Nanomaterials for Food Packaging.
Suvarna V, Nair A, Mallya R, Khan T, Omri A. Suvarna V, et al. Antibiotics (Basel). 2022 May 29;11(6):729. doi: 10.3390/antibiotics11060729. Antibiotics (Basel). 2022. PMID: 35740136 Free PMC article. Review.
-
Zeinali T, Alemzadeh E, Zarban A, Khorashadizadeh M, Ansarifar E. Zeinali T, et al. Food Sci Nutr. 2021 Sep 23;9(11):6353-6361. doi: 10.1002/fsn3.2601. eCollection 2021 Nov. Food Sci Nutr. 2021. PMID: 34760265 Free PMC article.
-
DFT Studies of the Activity and Reactivity of Limonene in Comparison with Selected Monoterpenes.
Rydel-Ciszek K. Rydel-Ciszek K. Molecules. 2024 Apr 1;29(7):1579. doi: 10.3390/molecules29071579. Molecules. 2024. PMID: 38611858 Free PMC article.
-
Moradinezhad F, Hedayati S, Ansarifar E. Moradinezhad F, et al. Polymers (Basel). 2023 Feb 20;15(4):1048. doi: 10.3390/polym15041048. Polymers (Basel). 2023. PMID: 36850330 Free PMC article.
References
-
- Tavares L.B., Ito N.M., Salvadori M.C., Santos D.J.D., Rosa D.S. PBAT/kraft lignin blend in flexible laminated food packaging: Peeling resistance and thermal degradability. Polym. Test. 2018;67:169–176. doi: 10.1016/j.polymertesting.2018.03.004. - DOI
-
- Maziyar M., Pooria P., Giuseppe C., Giuseppe L., Yoong K.A., Sui M.L., Stefana M. Effect of morphology and size of halloysite nanotubes on functional pectin bionanocomposites for food packaging applications. ACS Appl. Mater. Inter. 2017;9:17476–17488. - PubMed
-
- Gandhi N., Ahluwalia P., Bhise S., Singh B. Recent advances in antioxidant active food packaging. 2016.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous