Prevalence of Shiga-toxigenic and atypical enteropathogenic Escherichia coli in untreated surface water and reclaimed water in the Mid-Atlantic U.S - PubMed
doi: 10.1016/j.envres.2019.02.019. Epub 2019 Feb 13.
Manan Sharma 2 , Salina Parveen 1 , Fawzy Hashem 1 , Eric B May 1 , Eric T Handy 3 , Chanelle White 1 , Cheryl East 3 , Rhodel Bradshaw 3 , Shirley A Micallef 4 , Mary Theresa Callahan 4 , Sarah Allard 5 , Brienna Anderson 6 , Shani Craighead 6 , Samantha Gartley 6 , Adam Vanore 6 , Kalmia E Kniel 6 , Sultana Solaiman 4 , Anthony Bui 5 , Rianna Murray 5 , Hillary A Craddock 5 , Prachi Kulkarni 5 , Derek Foust 1 , Rico Duncan 1 , Maryam Taabodi 1 , Amy R Sapkota 5
Affiliations
- PMID: 30878734
- DOI: 10.1016/j.envres.2019.02.019
Prevalence of Shiga-toxigenic and atypical enteropathogenic Escherichia coli in untreated surface water and reclaimed water in the Mid-Atlantic U.S
Joseph Haymaker et al. Environ Res. 2019 May.
Abstract
The microbial quality of irrigation water has increasingly become a concern as a source of contamination for fruits and vegetables. Non-traditional sources of water are being used by more and more growers in smaller, highly diversified farms in the Mid-Atlantic region of the U.S. Shiga-toxigenic E. coli (STEC) have been responsible for several outbreaks of infections associated with the consumption of leafy greens. Our study evaluated the prevalence of the "big seven" STEC serogroups and the associated enterohemorrhagic E. coli (EHEC) virulence factors (VF) genes in conventional and nontraditional irrigation waters in the Mid-Atlantic region of the U.S. Water samples (n = 510) from 170 sampling events were collected from eight untreated surface water sites, two wastewater reclamation facilities, and one vegetable processing plant, over a 12-month period. Ten liters of water were filtered through Modified Moore swabs (MMS); swabs were then enriched into Universal Pre-enrichment Broth (UPB), followed by enrichment into non-O157 STEC R&F broth and isolation on R & F non-O157 STEC chromogenic plating medium. Isolates (n = 2489) from enriched MMS from water samples were screened for frequently reported STEC serogroups that cause foodborne illness: O26, O45, O103, O111, O121, O145, and O157, along with VF genes stx1, stx2, eae, and ehxA. Through this screening process, STEC isolates were found in 2.35% (12/510) of water samples, while 9.0% (46/510) contained an atypical enteropathogenic E. coli (aEPEC) isolate. The eae gene (n = 88 isolates) was the most frequently detected EHEC VF of the isolates screened. The majority of STEC isolates (stx1 or stx2) genes mainly came from either a pond or reclamation pond water site on two specific dates, potentially indicating that these isolates were not spatially or temporally distributed among the sampling sites. STEC isolates at reclaimed water sites may have been introduced after wastewater treatment. None of the isolates containing eae were determined to be Escherichia albertii. Our work showed that STEC prevalence in Mid-Atlantic untreated surface waters over a 12-month period was lower than the prevalence of atypical EPEC.
Keywords: Atypical enteropathogenic E. coli; Escherichia albertii; Escherichia coli; Irrigation water; Mid-Atlantic U.S.; Shiga toxin.
Published by Elsevier Inc.
Similar articles
-
Dewsbury DM, Renter DG, Shridhar PB, Noll LW, Shi X, Nagaraja TG, Cernicchiaro N. Dewsbury DM, et al. Foodborne Pathog Dis. 2015 Aug;12(8):726-32. doi: 10.1089/fpd.2015.1987. Epub 2015 Jun 15. Foodborne Pathog Dis. 2015. PMID: 26075548
-
Ekiri AB, Landblom D, Doetkott D, Olet S, Shelver WL, Khaitsa ML. Ekiri AB, et al. J Food Prot. 2014 Jul;77(7):1052-61. doi: 10.4315/0362-028X.JFP-13-373. J Food Prot. 2014. PMID: 24988009
-
Detection of Shiga toxigenic (STEC) and enteropathogenic (EPEC) Escherichia coli in dairy buffalo.
Beraldo LG, Borges CA, Maluta RP, Cardozo MV, Rigobelo EC, de Ávila FA. Beraldo LG, et al. Vet Microbiol. 2014 May 14;170(1-2):162-6. doi: 10.1016/j.vetmic.2014.01.023. Epub 2014 Feb 3. Vet Microbiol. 2014. PMID: 24560591
-
Haque M, Bosilevac JM, Chaves BD. Haque M, et al. Int J Food Microbiol. 2022 Sep 16;377:109832. doi: 10.1016/j.ijfoodmicro.2022.109832. Epub 2022 Jul 9. Int J Food Microbiol. 2022. PMID: 35834920 Review.
-
The "Big Six": Hidden Emerging Foodborne Bacterial Pathogens.
Alharbi MG, Al-Hindi RR, Esmael A, Alotibi IA, Azhari SA, Alseghayer MS, Teklemariam AD. Alharbi MG, et al. Trop Med Infect Dis. 2022 Nov 7;7(11):356. doi: 10.3390/tropicalmed7110356. Trop Med Infect Dis. 2022. PMID: 36355898 Free PMC article. Review.
Cited by
-
Acheamfour CL, Parveen S, Hashem F, Sharma M, Gerdes ME, May EB, Rogers K, Haymaker J, Duncan R, Foust D, Taabodi M, Handy ET, East C, Bradshaw R, Kim S, Micallef SA, Callahan MT, Allard S, Anderson-Coughlin B, Craighead S, Gartley S, Vanore A, Kniel KE, Solaiman S, Bui A, Murray R, Craddock HA, Kulkarni P, Rosenberg Goldstein RE, Sapkota AR. Acheamfour CL, et al. Microbiol Spectr. 2021 Oct 31;9(2):e0066921. doi: 10.1128/Spectrum.00669-21. Epub 2021 Oct 6. Microbiol Spectr. 2021. PMID: 34612697 Free PMC article.
-
Solaiman S, Allard SM, Callahan MT, Jiang C, Handy E, East C, Haymaker J, Bui A, Craddock H, Murray R, Kulkarni P, Anderson-Coughlin B, Craighead S, Gartley S, Vanore A, Duncan R, Foust D, Taabodi M, Sapkota A, May E, Hashem F, Parveen S, Kniel K, Sharma M, Sapkota AR, Micallef SA. Solaiman S, et al. Appl Environ Microbiol. 2020 Oct 1;86(20):e00342-20. doi: 10.1128/AEM.00342-20. Print 2020 Oct 1. Appl Environ Microbiol. 2020. PMID: 32769196 Free PMC article.
-
Vélez MV, Colello R, Nieto MV, Paz LE, Etcheverría AI, Vidal R, Padola NL. Vélez MV, et al. Vet Res Commun. 2024 Jun;48(3):1821-1830. doi: 10.1007/s11259-024-10308-0. Epub 2024 Jan 24. Vet Res Commun. 2024. PMID: 38263503
-
The Persistence of Bacterial Pathogens in Surface Water and Its Impact on Global Food Safety.
Bell RL, Kase JA, Harrison LM, Balan KV, Babu U, Chen Y, Macarisin D, Kwon HJ, Zheng J, Stevens EL, Meng J, Brown EW. Bell RL, et al. Pathogens. 2021 Oct 27;10(11):1391. doi: 10.3390/pathogens10111391. Pathogens. 2021. PMID: 34832547 Free PMC article. Review.
-
Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals?
Shipman EN, Yu J, Zhou J, Albornoz K, Beckles DM. Shipman EN, et al. Hortic Res. 2021 Jan 1;8(1):1. doi: 10.1038/s41438-020-00428-4. Hortic Res. 2021. PMID: 33384412 Free PMC article. Review.