A Laurasian origin for a pantropical bird radiation is supported by genomic and fossil data (Aves: Coraciiformes) - PubMed
- ️Tue Jan 01 2019
A Laurasian origin for a pantropical bird radiation is supported by genomic and fossil data (Aves: Coraciiformes)
Jenna M McCullough et al. Proc Biol Sci. 2019.
Abstract
The evolution of pantropically distributed clades has puzzled palaeo- and neontologists for decades regarding the different hypotheses about where they originated. In this study, we explored how a pantropical distribution arose in a diverse clade with a rich fossil history: the avian order Coraciiformes. This group has played a central role in the debate of the biogeographical history of Neoaves. However, the order lacked a coherent species tree to inform study of its evolutionary dynamics. Here, we present the first complete species tree of Coraciiformes, produced with 4858 ultraconserved elements, which supports two clades: (1) Old World-restricted bee-eaters, rollers and ground-rollers; and (2) New World todies and motmots, and cosmopolitan kingfishers. Our results indicated two pulses of diversification: (1) major lineages of Coraciiformes arose in Laurasia approximately 57 Ma, followed by independent dispersals into equatorial regions, possibly due to tracking tropical habitat into the lower latitudes-the Coracii (Coraciidae + Brachypteraciidae) into the Afrotropics, bee-eaters throughout the Old World tropics, and kingfishers into the Australasian tropics; and (2) diversification of genera in the tropics during the Miocene and Pliocene. Our study supports the important role of Laurasia as the geographical origin of a major pantropical lineage and provides a new framework for comparative analyses in this charismatic bird radiation.
Keywords: Coracii; North American gateway hypothesis; avian systematics; historical biogeography; macroevolutionary dynamics; target capture.
Conflict of interest statement
We declare we have no competing interests.
Figures

Biogeography and macroevolutionary dynamics of Coraciiformes. (a) Time-calibrated, maximum clade credibility tree showing species-level relationships of Coraciiformes based on 500 ultraconserved elements, fossil calibrations and maximum-likelihood topology constraints. Node ages were estimated in BEAST with three fossil calibrations (electronic supplementary material, table S2), indicated by daggers (†), and two secondary calibrations indicated by asterisks (*). Representative taxa are illustrated (from top to bottom): pitta-like ground-roller (Atelornis pittoides); Oriental dollarbird (Eurystomus orientalis); rainbow bee-eater (Merops ornatus); Cuban tody (Todus multicolor); rufous motmot (Baryphthgenus martii); north Philippine dwarf kingfisher (Ceyx melanurus); belted kingfisher (Megaceryle alcyon); and white-breasted kingfisher (Halcyon smyrnensis). Biogeographical information is summarized from the full results (see electronic supplementary material, figure S9). Branch colours represent the most recent ancestral node's range reconstruction and correspond to the following areas on the map: (a) Nearctic, (b) Caribbean islands, (c) South America, (d) Palaearctic, (e) Africa and Madagascar, (f) Indomalaya, (g) Wallacea and the Philippines, (h) New Guinea and Australia and (i) Oceania. Grey branches indicate a broad distribution of three or more areas. (b) Results from macroevolutionary rate analysis in BAMM. The phylorate plot depicts an inferred core rate shift in Todiramphus. Clade-specific rate through time plots are shown for (a) all Coraciiformes, (b) all Todiramphus and (c) the background rate of Coraciiformes excluding Todiramphus with mean evolutionary rates (λ), respectively. Original artwork by Madison E. Mayfield. (Online version in colour.)

Distribution of coraciiform branching times and palaeogeographical and palaeoclimatological events. White bars indicate the 95% credible intervals of divergence times and mean ages are indicated by a thick black bar for the selected nodes. Estimates of global temperatures throughout the Cenozoic are adapted from Hansen et al. [113]. (Online version in colour.)
Similar articles
-
Lo PC, Liu SH, Chao NL, Nunoo FK, Mok HK, Chen WJ. Lo PC, et al. Mol Phylogenet Evol. 2015 Jul;88:132-43. doi: 10.1016/j.ympev.2015.03.025. Epub 2015 Apr 4. Mol Phylogenet Evol. 2015. PMID: 25848970
-
Cardinal-McTeague WM, Wurdack KJ, Sigel EM, Gillespie LJ. Cardinal-McTeague WM, et al. BMC Evol Biol. 2019 Jan 22;19(1):29. doi: 10.1186/s12862-018-1308-9. BMC Evol Biol. 2019. PMID: 30670006 Free PMC article.
-
Torke BM, Cardoso D, Chang H, Li SJ, Niu M, Pennington RT, Stirton CH, Xu WB, Zartman CE, Chung KF. Torke BM, et al. Mol Phylogenet Evol. 2022 Jan;166:107329. doi: 10.1016/j.ympev.2021.107329. Epub 2021 Oct 19. Mol Phylogenet Evol. 2022. PMID: 34678410
-
Bird evolution in the Eocene: climate change in Europe and a Danish fossil fauna.
Lindow BE, Dyke GJ. Lindow BE, et al. Biol Rev Camb Philos Soc. 2006 Nov;81(4):483-99. doi: 10.1017/S146479310600707X. Epub 2006 Aug 8. Biol Rev Camb Philos Soc. 2006. PMID: 16893476 Review.
-
Mayr G. Mayr G. Biol Rev Camb Philos Soc. 2017 May;92(2):1174-1188. doi: 10.1111/brv.12274. Epub 2016 Apr 8. Biol Rev Camb Philos Soc. 2017. PMID: 27062331 Review.
Cited by
-
Uneven Missing Data Skew Phylogenomic Relationships within the Lories and Lorikeets.
Smith BT, Mauck WM, Benz BW, Andersen MJ. Smith BT, et al. Genome Biol Evol. 2020 Jul 1;12(7):1131-1147. doi: 10.1093/gbe/evaa113. Genome Biol Evol. 2020. PMID: 32470111 Free PMC article.
-
Extant species fail to estimate ancestral geographical ranges at older nodes in primate phylogeny.
Wisniewski AL, Lloyd GT, Slater GJ. Wisniewski AL, et al. Proc Biol Sci. 2022 May 25;289(1975):20212535. doi: 10.1098/rspb.2021.2535. Epub 2022 May 18. Proc Biol Sci. 2022. PMID: 35582793 Free PMC article.
-
Degrange FJ, Pol D, Puerta P, Wilf P. Degrange FJ, et al. Sci Rep. 2021 Jan 14;11(1):1363. doi: 10.1038/s41598-020-80479-8. Sci Rep. 2021. PMID: 33446824 Free PMC article.
-
Complex plumages spur rapid color diversification in kingfishers (Aves: Alcedinidae).
Eliason CM, McCullough JM, Hackett SJ, Andersen MJ. Eliason CM, et al. Elife. 2023 Apr 21;12:e83426. doi: 10.7554/eLife.83426. Elife. 2023. PMID: 37083474 Free PMC article.
-
Genomic signatures of convergent shifts to plunge-diving behavior in birds.
Eliason CM, Mellenthin LE, Hains T, McCullough JM, Pirro S, Andersen MJ, Hackett SJ. Eliason CM, et al. Commun Biol. 2023 Oct 24;6(1):1011. doi: 10.1038/s42003-023-05359-z. Commun Biol. 2023. PMID: 37875535 Free PMC article.
References
-
- Lavin M, Luckow M. 1993. Origins and relationships of tropical North America in the context of the Boreotropics hypothesis. Am. J. Bot. 80, 1–14. (10.1002/j.1537-2197.1993.tb13761.x) - DOI
-
- Chanderbali AS, van der Werff H, Renner SS. 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann. Mo. Botanical Garden 88, 104 (10.2307/2666133) - DOI
-
- Erwin TL, Stork NE. 1985. The Hiletini, an ancient and enigmatic tribe of Carabidae with a pantropical distribution (Coleoptera). Syst. Entomol. 10, 405–451. (10.1111/j.1365-3113.1985.tb00149.x) - DOI
-
- Moyle RG. 2005. Phylogeny and biogeographical history of Trogoniformes, a pantropical bird order. Biol. J. Linnean Soc. 84, 725–738. (10.1111/j.1095-8312.2005.00435.x) - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources