Burma Terrane part of the Trans-Tethyan Arc during collision with India according to palaeomagnetic data - PubMed
Burma Terrane part of the Trans-Tethyan Arc during collision with India according to palaeomagnetic data
Jan Westerweel et al. Nat Geosci. 2019 Oct.
Abstract
Convergence between the Indian and Asian plates has reshaped large parts of Asia, changing regional climate and biodiversity. Yet geodynamic models fundamentally diverge on how convergence was accommodated since the India-Asia collision. Here we report paleomagnetic data from the Burma Terrane, at the eastern edge of the collision zone and famous for its Cretaceous amber biota, to better determine the evolution of the India-Asia collision. The Burma Terrane was part of a Trans-Tethyan island arc and stood at a near-equatorial southern latitude at ~95 Ma, suggesting island endemism for the Burmese amber biota. The Burma Terrane underwent significant clockwise rotation between ~80-50 Ma, causing its subduction margin to become hyper-oblique. Subsequently, it was translated northward on the Indian Plate, by an exceptional distance of at least 2000 km, along a dextral strike-slip fault system in the east. Our reconstructions are only compatible with geodynamic models involving a first collision of India with a near-equatorial Trans-Tethyan subduction system at ~60 Ma, followed by a later collision with the Asian margin.
Conflict of interest statement
Competing interests The authors declare no competing financial interests.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/add3/6774779/90cc57ef8a6f/EMS83923-f001.gif)
Alternative plate reconstructions of India-Asia paleogeography at 60 Ma with GPlates (See also Methods): a) Reconstruction with a nearly linear subduction zone and significant extrusion of Indochina blocks ,; b) Reconstruction with a Greater India Basin ; c) Reconstruction with a second Trans-Tethyan subduction zone . Abbreviations: BT = Burma Terrane, GI(B) = Greater India (Basin), IB = Indochina Blocks, KA = Kohistan Arc, LT = Lhasa Terrane, RRF = Red River Fault (accommodating Indochina extrusion), SL = Sundaland, TTS = Trans-Tethyan subduction system, WA = Woyla Arc.
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/add3/6774779/46380d4cddd6/EMS83923-f002.gif)
Generalized Myanmar geologic map . Localities: 1 = Kawlin, 2 = Pinlebu, 3 = Banmauk, 4 = Kyaung Le, 5 = Shinpa, 6 = Kalewa, 7 = Burmese ambers ,. Abbreviations: AI = Cretaceous-Paleogene Asian intrusives, CB = Chindwin Basin, GA = Cretaceous Gangdese Arc, IBRB: Indo-Burman Ranges basement, KF = Kabaw Fault, MMMB = Mogok–Mandalay–Mergui Belt (including Jurassic Eastern Belt Ophiolites & Jade Belt Ophiolite), SF = Sagaing Fault, SPG = Songpan Ganze & Yangtze complexes, WBO = Cretaceous Western Belt Ophiolite, WPA = Wuntho-Popa Arc, YTSZ = Yarlung-Tsangpo Suture Zone. Dashed black lines: Central Myanmar Basins.
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/add3/6774779/80afc0349da7/EMS83923-f003.gif)
Equal-area projections of interpretable paleomagnetic results: a) Tilt-corrected characteristic directions (squares) of samples from upper Eocene sediments from Kalewa and mean direction (blue); b) Early Late Cretaceous Wuntho Range site means with 95% confidence angles in in-situ coordinates, coloured by locality: Pinlebu (purple), Shinpa (dark green), Banmauk (blue), Kawlin (black) and Kyaung Le (green) and mean direction (red); c) Early Late Cretaceous/late Eocene (red/blue circles) final mean directions compared with the stable Eurasia APWP in the early Late Cretaceous/late Eocene (red/blue diamonds) . Corresponding paleolatitudes and rotation magnitudes are indicated with 95% confidence angles. Open/closed symbols denote negative/positive inclinations.
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/add3/6774779/d0c00111a5aa/EMS83923-f004.gif)
Reconstructions of the Burma Terrane and Asia at 95 Ma (left) and 40 Ma (right) with GPlates (See also Methods). Abbreviations: BT = Burma Terrane, EA = Eastern Andaman Basins, IB = Indochina Blocks, GI = Greater India, KA = Kohistan Arc, LT = Lhasa Terrane, SB = Sibumasu Block, SL = Sundaland, WA = Woyla Arc.
Similar articles
-
Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision.
Yuan J, Yang Z, Deng C, Krijgsman W, Hu X, Li S, Shen Z, Qin H, An W, He H, Ding L, Guo Z, Zhu R. Yuan J, et al. Natl Sci Rev. 2020 Jul 27;8(7):nwaa173. doi: 10.1093/nsr/nwaa173. eCollection 2021 Jul. Natl Sci Rev. 2020. PMID: 34691680 Free PMC article.
-
Paleocene latitude of the Kohistan-Ladakh arc indicates multistage India-Eurasia collision.
Martin CR, Jagoutz O, Upadhyay R, Royden LH, Eddy MP, Bailey E, Nichols CIO, Weiss BP. Martin CR, et al. Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29487-29494. doi: 10.1073/pnas.2009039117. Epub 2020 Nov 4. Proc Natl Acad Sci U S A. 2020. PMID: 33148806 Free PMC article.
-
Ma Y, Yang T, Bian W, Jin J, Zhang S, Wu H, Li H. Ma Y, et al. Sci Rep. 2016 Feb 17;6:21605. doi: 10.1038/srep21605. Sci Rep. 2016. PMID: 26883692 Free PMC article.
-
Fritz H, Abdelsalam M, Ali KA, Bingen B, Collins AS, Fowler AR, Ghebreab W, Hauzenberger CA, Johnson PR, Kusky TM, Macey P, Muhongo S, Stern RJ, Viola G. Fritz H, et al. J Afr Earth Sci. 2013 Oct;86:65-106. doi: 10.1016/j.jafrearsci.2013.06.004. J Afr Earth Sci. 2013. PMID: 27065752 Free PMC article. Review.
-
van Hinsbergen DJJ. van Hinsbergen DJJ. Natl Sci Rev. 2022 Apr 21;9(8):nwac074. doi: 10.1093/nsr/nwac074. eCollection 2022 Aug. Natl Sci Rev. 2022. PMID: 35992242 Free PMC article. Review.
Cited by
-
Badano D, Zhang Q, Fratini M, Maugeri L, Bukreeva I, Longo E, Wilde F, Yeates DK, Cerretti P. Badano D, et al. Insects. 2021 Apr 16;12(4):354. doi: 10.3390/insects12040354. Insects. 2021. PMID: 33923404 Free PMC article.
-
Contributions to the flora of Myanmar from 2000 to 2019.
Yang B, Deng M, Zhang MX, Moe AZ, Ding HB, Maw MB, Win PP, Corlett RT, Tan YH. Yang B, et al. Plant Divers. 2020 Jul 28;42(4):292-301. doi: 10.1016/j.pld.2020.06.005. eCollection 2020 Aug. Plant Divers. 2020. PMID: 33094200 Free PMC article.
-
Microcontinent subduction and S-type volcanism prior to India-Asia collision.
Yang Z, Tang J, Santosh M, Zhao X, Lang X, Wang Y, Ding S, Ran F. Yang Z, et al. Sci Rep. 2021 Jul 21;11(1):14882. doi: 10.1038/s41598-021-94492-y. Sci Rep. 2021. PMID: 34290342 Free PMC article.
-
Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence.
Li YD, Kundrata R, Tihelka E, Liu Z, Huang D, Cai C. Li YD, et al. Proc Biol Sci. 2021 Jan 27;288(1943):20202730. doi: 10.1098/rspb.2020.2730. Epub 2021 Jan 20. Proc Biol Sci. 2021. PMID: 33468008 Free PMC article.
-
Bolotov IN, Pasupuleti R, Subba Rao NV, Unnikrishnan SK, Chan N, Lunn Z, Win T, Gofarov MY, Kondakov AV, Konopleva ES, Lyubas AA, Tomilova AA, Vikhrev IV, Pfenninger M, Düwel SS, Feldmeyer B, Nesemann HF, Nagel KO. Bolotov IN, et al. Sci Rep. 2022 Jan 27;12(1):1518. doi: 10.1038/s41598-022-05257-0. Sci Rep. 2022. PMID: 35087130 Free PMC article.
References
-
- Molnar P, Tapponnier P. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science. 1975;189:419–426. - PubMed
-
- Aitchison JC, Ali JR, Davis AM. When and where did India and Asia collide? J Geophys Res. 2007;112
-
- Replumaz A, Negredo AM, Guillot S, Villaseñor A. Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction. Tectonophysics. 2010;483:125–134.
-
- Ingalls M, Rowley DB, Currie B, Colman AS. Large-scale subduction of continental crust implied by India–Asia mass-balance calculation. Nat Geosci. 2016;9:848–853.
-
- van Hinsbergen DJJ, et al. Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics. 2018 doi: 10.1016/j.tecto.2018.04.006. - DOI
LinkOut - more resources
Full Text Sources