Expression of a recombinant bacterial L-asparaginase in human cells - PubMed
- ️Tue Jan 01 2019
doi: 10.1186/s13104-019-4836-5.
Ludmilla Freire Caetano 2 , Ariany Lima Sousa Torres 2 , Matheus Soares Alves 1 , Emanuelly Thays Muniz Figueiredo Silva 1 , Louhanna Pinheiro Rodrigues Teixeira 1 , Daniel Câmara Teixeira 1 , Renato de Azevedo Moreira 1 , Marcela Helena Gambim Fonseca 2 , Saul Gaudêncio Neto 1 , Leonardo Tondello Martins 1 , Gilvan Pessoa Furtado 2 , Kaio Cesar Simiano Tavares 3
Affiliations
- PMID: 31806048
- PMCID: PMC6896745
- DOI: 10.1186/s13104-019-4836-5
Expression of a recombinant bacterial L-asparaginase in human cells
Raquel Caminha Dantas et al. BMC Res Notes. 2019.
Abstract
Objective: L-Asparaginase (ASNase) is an enzyme used in the treatment of acute lymphoblastic leukemia (ALL). As the therapeutic ASNases has bacterial origin, severe side effects are associated with its use, among them hypersensitivity and inactivation of the enzyme. In this context, the objective of this work was to produce a recombinant ASNase of bacterial origin in human cells in order to determine the presence and consequences of potential post-translational modifications on the enzyme.
Results: Recombinant ASNase was expressed in human cells with a molecular weight of 60 kDa, larger than in Escherichia coli, which is 35 kDa. N-glycosylation analysis demonstrated that the increased molecular weight resulted from the addition of glycans to the protein by mammalian cells. The glycosylated ASNase presented in vitro activity at physiological pH and temperature. Given that glycosylation can act to reduce antigenicity by masking protein epitopes, our data may contribute to the development of an alternative ASNase in the treatment of ALL in patients who demonstrate side effects to currently marketed enzymes.
Keywords: Acute lymphoblastic leukemia; Glycosylation; Hypersensitivity; L-Asparaginase.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures

Bacterial
l-asparaginase gene expression in mammalian HEK-293 cells. a pASNase vector, containing two in tandem CMV promoters (pCMV), the coding sequence for the E. coli
l-Asparaginase gene (ASNase) with a milk signal peptide sequence (mSP) and a kanamycin resistance gene (kanr). b Transfection of HEK-293 cells in white light (top line) and under UV light (bottom line) with the pASNase vector in order to produce clones with the stably integrated transgene. (1) Cells transfected with the linear pASNase plasmid, (2) Cells transfected without DNA (negative control), (3) Cells transfected with a commercial GFP plasmid (positive control). c Immunodetection of recombinant
l-Asparaginase secreted in the medium of HEK-293. (1) Cell culture medium from HEK-293 cells transfected with pASNase plasmid, (2) Cell culture medium from HEK-293 cells transfected with no DNA (negative control), (3) Cellular lysate from HEK-293 cells transfected with pASNase plasmid, (4) Cellular lysate from HEK-293 cells transfected with DNA (negative control), (5) Commercial
l-Asparaginase from E. coli (positive control)

Glycosylation analysis of the bacterial
l-Asparaginase expressed in the mammalian cell line HEK-293. a Predicted N-glycosylation sites in the
l-Asparaginase sequence expressed in HEK-293 cells using the NetNGlyc 1.0 software. A position with the potential (vertical lines) crossing the threshold (horizontal line at 0.5) is predicted when glycosylated. b Immunodetection of recombinant
l-Asparaginase expressed in HEK-293 cells and E. coli after deglycosylation with PNGase-F. (1) HEK-293
l-Asparaginase treated with PNGase-F, (2) HEK-293
l-Asparaginase untreated with PNGase-F, (3) E. coli
l-Asparaginase treated with PNGase-F, (4) E. coli
l-Asparaginase untreated with PNGase-F

Bacterial and HEK-293
l-Asparaginase relative activity at different pHs and temperatures. a Effect of the pH on the activity of the glycosylated bacterial
l-Asparaginase expressed in the mammalian cell line HEK-293 (left) and in E. coli (right). b Effect of temperature, at pH 8.0, of the glycosylated bacterial
l-Asparaginase expressed in the mammalian cell line HEK-293 (left) and in E. coli (right)
Similar articles
-
Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production.
Shishparenok AN, Gladilina YA, Zhdanov DD. Shishparenok AN, et al. Int J Mol Sci. 2023 Oct 16;24(20):15220. doi: 10.3390/ijms242015220. Int J Mol Sci. 2023. PMID: 37894901 Free PMC article. Review.
-
Expression and characterization of recombinant l-asparaginase from Pseudomonas fluorescens.
Sindhu R, Manonmani HK. Sindhu R, et al. Protein Expr Purif. 2018 Mar;143:83-91. doi: 10.1016/j.pep.2017.09.009. Epub 2017 Oct 25. Protein Expr Purif. 2018. PMID: 29079538
-
Synthesis, characterization and immunogenicity of silk fibroin-L-asparaginase bioconjugates.
Zhang YQ, Zhou WL, Shen WD, Chen YH, Zha XM, Shirai K, Kiguchi K. Zhang YQ, et al. J Biotechnol. 2005 Nov 21;120(3):315-26. doi: 10.1016/j.jbiotec.2005.06.027. Epub 2005 Aug 15. J Biotechnol. 2005. PMID: 16102867
-
de Moura WAF, Schultz L, Breyer CA, de Oliveira ALP, Tairum CA, Fernandes GC, Toyama MH, Pessoa-Jr A, Monteiro G, de Oliveira MA. de Moura WAF, et al. Biotechnol Lett. 2020 Nov;42(11):2333-2344. doi: 10.1007/s10529-020-02955-5. Epub 2020 Jul 7. Biotechnol Lett. 2020. PMID: 32638188
-
Microbial production, molecular modification, and practical application of l-Asparaginase: A review.
Wang Y, Xu W, Wu H, Zhang W, Guang C, Mu W. Wang Y, et al. Int J Biol Macromol. 2021 Sep 1;186:975-983. doi: 10.1016/j.ijbiomac.2021.07.107. Epub 2021 Jul 19. Int J Biol Macromol. 2021. PMID: 34293360 Review.
Cited by
-
Ventouri IK, Chang W, Meier F, Drexel R, Somsen GW, Schoenmakers PJ, de Spiegeleer B, Haselberg R, Astefanei A. Ventouri IK, et al. Anal Chem. 2023 May 16;95(19):7487-7494. doi: 10.1021/acs.analchem.2c05049. Epub 2023 May 5. Anal Chem. 2023. PMID: 37146101 Free PMC article.
-
Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production.
Shishparenok AN, Gladilina YA, Zhdanov DD. Shishparenok AN, et al. Int J Mol Sci. 2023 Oct 16;24(20):15220. doi: 10.3390/ijms242015220. Int J Mol Sci. 2023. PMID: 37894901 Free PMC article. Review.
-
Enzyme Engineering Strategies for the Bioenhancement of L-Asparaginase Used as a Biopharmaceutical.
Miranda J, Lefin N, Beltran JF, Belén LH, Tsipa A, Farias JG, Zamorano M. Miranda J, et al. BioDrugs. 2023 Nov;37(6):793-811. doi: 10.1007/s40259-023-00622-5. Epub 2023 Sep 12. BioDrugs. 2023. PMID: 37698749 Review.
-
Lailaja VP, Sumithra TG, Reshma KJ, Anusree VN, Amala PV, Kishor TG, Sanil NK. Lailaja VP, et al. Folia Microbiol (Praha). 2022 Jun;67(3):491-505. doi: 10.1007/s12223-022-00952-x. Epub 2022 Feb 9. Folia Microbiol (Praha). 2022. PMID: 35138564
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials