Borosulfates-Synthesis and Structural Chemistry of Silicate Analogue Compounds - PubMed
- ️Wed Jan 01 2020
Review
Borosulfates-Synthesis and Structural Chemistry of Silicate Analogue Compounds
Jörn Bruns et al. Chemistry. 2020.
Abstract
Borosulfates are oxoanionic compounds consisting of condensed sulfur- and boron-centered tetrahedra. Hitherto, they were mostly achieved from solvothermal syntheses in SO3 -enriched sulfuric acid, or from reactions with the superacid H[B(HSO4 )4 ]. The crystal structures are very similar to those of the corresponding class of silicates and their substitution variants, especially regarding the typical structural motif of corner-sharing tetrahedra. However, the borosulfates are supposed to be even more versatile, because (BO3 ) units might also be part of the anionic network. The following article deals with detailed reports on the different synthesis strategies, the crystal chemistry of borosulfates in comparison to silicates, and their hitherto identified properties.
Keywords: boroselenates; borosulfates; crystal structure; inorganic synthesis.
© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Conflict of interest statement
The authors declare no conflict of interest.
Figures

Schematic description of hitherto obtained borosulfate structures including a classification in different dimensions. Red polyhedra represent the (BO4) units and yellow polyhedra the (SO4) units.

Non‐condensed complex anions [B(SO4)4]5− in K5[B(SO4)4] and [B(SO4)3(HSO4)]4− in K4[BS4O15(OH)] with an occupancy factor of 0.5 for the protons.

Protonated and non‐protonated borosulfate anions in Gd2[B2S6O24] (left) and Cu[B(SO4)2(HSO4)] (right).

Calculated free energy differences ΔG of the complex anion [B2(SO4)4(SO4H)2]4− between the hypothetical chair conformation (left) and the experimentally found twist conformation (right) as well as pK a values for the deprotonation to [B2(SO4)5(SO4H)]5− and to [B2(SO4)6]6−. Color code: blue—oxygen, yellow—sulfur, red—boron, and white—hydrogen.15

Cutout from the open‐branched chain 1∞ [B(SO4)4/2 ]− and the infinite loop‐branched chain 1∞ [B(SO4)2/2 (SO4)2/1 ]3−.

Extended unit cell of Li[B(SO4)2] in projection on (1 0 0).

TX 4 super‐tetrahedral units and the different observed connection modes for the known classical borosulfates.

The molecular anion [B(S2O7)2]− in the crystal structures of A[B(S2O7)2] (A=Li, Na, K, NH4).

Left: Extended unit cell with hydrogen bridging of H[B(SO4)(S2O7)] and anionic chains running parallel to the crystallographic c‐axis; right: Cut‐out of one anionic chain in H[B(SO4)(S2O7)], emphasizing the repeating {B(HSO4)2(S2O7)} units.

Extended unit cell of B2S2O9 in projection on (0 1 0), exhibiting (B2O7)‐centered double layers.

Left: View on top of an anionic layer of Cs2B2S3O13; right: (SO4) tetrahedra always pointing to the faces of the anionic layer in Cs2B2S3O13.

Left and right: Anionic chains with (B2O7) backbones in Ba[B2S3O13]/ Ba[B2O(SO4)3].

Left: molecular anion [B2O(SO4)6]8− in α‐Mg[B2O(SO4)6] and A[B2O(SO4)6] (A=Mn, Ni, Co, Zn); right: [B2S4O17]4− anion in Rb4B2S4O17.

Ternary plot of borosulfates charge compensated by monovalent cations. The classical borosulfates are all located on a line between A 2SO4 and the composition „B2O3⋅3SO3“. The unconventional borosulfates with S‐O‐S bridges are placed on a line between SO3 and ABS2O8 and the unconventional borosulfates with B‐O‐B bridges are found on a line between A 2SO4 and B2S2O9.
Similar articles
-
Bruns J, Podewitz M, Liedl KR, Janka O, Pöttgen R, Huppertz H. Bruns J, et al. Angew Chem Int Ed Engl. 2018 Jul 20;57(30):9548-9552. doi: 10.1002/anie.201803395. Epub 2018 May 16. Angew Chem Int Ed Engl. 2018. PMID: 29683245 Free PMC article.
-
The first boroselenates as new silicate analogues.
Daub M, Hillebrecht H. Daub M, et al. Chemistry. 2015 Jan 2;21(1):298-304. doi: 10.1002/chem.201404100. Epub 2014 Oct 30. Chemistry. 2015. PMID: 25359585
-
Pasqualini LC, Janka O, Olthof S, Huppertz H, Liedl KR, Pöttgen R, Podewitz M, Bruns J. Pasqualini LC, et al. Chemistry. 2020 Dec 23;26(72):17405-17415. doi: 10.1002/chem.202002221. Epub 2020 Oct 22. Chemistry. 2020. PMID: 32557937 Free PMC article.
-
Crystal Chemistry of High-Temperature Borates.
Leonyuk NI, Maltsev VV, Volkova EA. Leonyuk NI, et al. Molecules. 2020 May 25;25(10):2450. doi: 10.3390/molecules25102450. Molecules. 2020. PMID: 32466152 Free PMC article. Review.
-
Recent Progress in Crystalline Borates with Edge-Sharing BO4 Tetrahedra.
Li JJ, Chen WF, Lan YZ, Cheng JW. Li JJ, et al. Molecules. 2023 Jun 28;28(13):5068. doi: 10.3390/molecules28135068. Molecules. 2023. PMID: 37446729 Free PMC article. Review.
Cited by
-
The First Bismuth Borosulfates Comprising Oxonium and a Tectosilicate-Analogous Anion.
Hämmer M, Bayarjargal L, Höppe HA. Hämmer M, et al. Angew Chem Int Ed Engl. 2021 Jan 18;60(3):1503-1506. doi: 10.1002/anie.202011786. Epub 2020 Nov 12. Angew Chem Int Ed Engl. 2021. PMID: 33026134 Free PMC article.
-
Borate-Based Compounds as Mixed Polyanion Cathode Materials for Advanced Batteries.
Sanglay GDD, Garcia JS, Palaganas MS, Sorolla M 2nd, See S, Limjuco LA, Ocon JD. Sanglay GDD, et al. Molecules. 2022 Nov 19;27(22):8047. doi: 10.3390/molecules27228047. Molecules. 2022. PMID: 36432146 Free PMC article. Review.
-
Li Z, Jin W, Zhang F, Yang Z, Pan S. Li Z, et al. ACS Cent Sci. 2022 Nov 23;8(11):1557-1564. doi: 10.1021/acscentsci.2c00832. Epub 2022 Nov 11. ACS Cent Sci. 2022. PMID: 36439311 Free PMC article.
-
Strong Lewis and Brønsted Acidic Sites in the Borosulfate Mg3 [H2 O→B(SO4 )3 ]2.
Netzsch P, Stroh R, Pielnhofer F, Krossing I, Höppe HA. Netzsch P, et al. Angew Chem Int Ed Engl. 2021 May 3;60(19):10643-10646. doi: 10.1002/anie.202016920. Epub 2021 Mar 30. Angew Chem Int Ed Engl. 2021. PMID: 33751735 Free PMC article.
-
Sutorius S, van Gerven D, Olthof S, Rasche B, Bruns J. Sutorius S, et al. Chemistry. 2022 Apr 19;28(22):e202200004. doi: 10.1002/chem.202200004. Epub 2022 Mar 23. Chemistry. 2022. PMID: 35262987 Free PMC article.
References
-
- Liebau F., Structural Chemistry of Silicates, Springer, Heidelberg, 1985.
-
- None
-
- Deer W. A., Howie R. A., Zussmann J., An Introduction to Rock-Forming Minerals, Langmanns, London, 1966;
-
- Krivovichev S. V., Minerals as Advanced Materials II, Springer, Heidelberg, 2012;
-
- Ying J. Y., Mehnert C. P., Wong M. S., Angew. Chem. Int. Ed. 1999, 38, 56–77;
- Angew. Chem. 1999, 111, 58–82;
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials