Climate change, ecosystems and abrupt change: science priorities - PubMed
- ️Wed Jan 01 2020
Review
. 2020 Mar 16;375(1794):20190105.
doi: 10.1098/rstb.2019.0105. Epub 2020 Jan 27.
W John Calder 2 , Graeme S Cumming 3 , Terry P Hughes 3 , Anke Jentsch 4 , Shannon L LaDeau 5 , Timothy M Lenton 6 , Bryan N Shuman 2 , Merritt R Turetsky 7 , Zak Ratajczak 1 , John W Williams 8 , A Park Williams 9 , Stephen R Carpenter 10
Affiliations
- PMID: 31983326
- PMCID: PMC7017767
- DOI: 10.1098/rstb.2019.0105
Review
Climate change, ecosystems and abrupt change: science priorities
Monica G Turner et al. Philos Trans R Soc Lond B Biol Sci. 2020.
Abstract
Ecologists have long studied patterns, directions and tempos of change, but there is a pressing need to extend current understanding to empirical observations of abrupt changes as climate warming accelerates. Abrupt changes in ecological systems (ACES)-changes that are fast in time or fast relative to their drivers-are ubiquitous and increasing in frequency. Powerful theoretical frameworks exist, yet applications in real-world landscapes to detect, explain and anticipate ACES have lagged. We highlight five insights emerging from empirical studies of ACES across diverse ecosystems: (i) ecological systems show ACES in some dimensions but not others; (ii) climate extremes may be more important than mean climate in generating ACES; (iii) interactions among multiple drivers often produce ACES; (iv) contingencies, such as ecological memory, frequency and sequence of disturbances, and spatial context are important; and (v) tipping points are often (but not always) associated with ACES. We suggest research priorities to advance understanding of ACES in the face of climate change. Progress in understanding ACES requires strong integration of scientific approaches (theory, observations, experiments and process-based models) and high-quality empirical data drawn from a diverse array of ecosystems. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.
Keywords: disturbance; ecological memory; regime shift; resilience; thresholds.
Conflict of interest statement
We declare we have no competing interests.
Similar articles
-
Abrupt Change in Ecological Systems: Inference and Diagnosis.
Ratajczak Z, Carpenter SR, Ives AR, Kucharik CJ, Ramiadantsoa T, Stegner MA, Williams JW, Zhang J, Turner MG. Ratajczak Z, et al. Trends Ecol Evol. 2018 Jul;33(7):513-526. doi: 10.1016/j.tree.2018.04.013. Epub 2018 May 18. Trends Ecol Evol. 2018. PMID: 29784428 Review.
-
Climate change and ecosystems: threats, opportunities and solutions.
Malhi Y, Franklin J, Seddon N, Solan M, Turner MG, Field CB, Knowlton N. Malhi Y, et al. Philos Trans R Soc Lond B Biol Sci. 2020 Mar 16;375(1794):20190104. doi: 10.1098/rstb.2019.0104. Epub 2020 Jan 27. Philos Trans R Soc Lond B Biol Sci. 2020. PMID: 31983329 Free PMC article.
-
Bardgett RD, Caruso T. Bardgett RD, et al. Philos Trans R Soc Lond B Biol Sci. 2020 Mar 16;375(1794):20190112. doi: 10.1098/rstb.2019.0112. Epub 2020 Jan 27. Philos Trans R Soc Lond B Biol Sci. 2020. PMID: 31983338 Free PMC article.
-
Lenton TM. Lenton TM. Philos Trans R Soc Lond B Biol Sci. 2020 Mar 16;375(1794):20190123. doi: 10.1098/rstb.2019.0123. Epub 2020 Jan 27. Philos Trans R Soc Lond B Biol Sci. 2020. PMID: 31983337 Free PMC article. Review.
-
Disturbance and landscape dynamics in a changing world.
Turner MG. Turner MG. Ecology. 2010 Oct;91(10):2833-49. doi: 10.1890/10-0097.1. Ecology. 2010. PMID: 21058545
Cited by
-
Climate change causes critical transitions and irreversible alterations of mountain forests.
Albrich K, Rammer W, Seidl R. Albrich K, et al. Glob Chang Biol. 2020 Jul;26(7):4013-4027. doi: 10.1111/gcb.15118. Epub 2020 May 8. Glob Chang Biol. 2020. PMID: 32301569 Free PMC article.
-
A unifying framework for studying and managing climate-driven rates of ecological change.
Williams JW, Ordonez A, Svenning JC. Williams JW, et al. Nat Ecol Evol. 2021 Jan;5(1):17-26. doi: 10.1038/s41559-020-01344-5. Epub 2020 Dec 7. Nat Ecol Evol. 2021. PMID: 33288870 Review.
-
Jepsen JU, Arneberg P, Ims RA, Siwertsson A, Yoccoz NG, Fauchald P, Pedersen ÅØ, van der Meeren GI, von Quillfeldt CH. Jepsen JU, et al. Environ Manage. 2024 Nov;74(5):1020-1036. doi: 10.1007/s00267-024-02042-9. Epub 2024 Sep 13. Environ Manage. 2024. PMID: 39271533 Free PMC article.
-
Net effect of environmental fluctuations in multiple global-change drivers across the tree of life.
Cabrerizo MJ, Marañón E. Cabrerizo MJ, et al. Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2205495119. doi: 10.1073/pnas.2205495119. Epub 2022 Aug 1. Proc Natl Acad Sci U S A. 2022. PMID: 35914141 Free PMC article.
-
Climate drives coupled regime shifts across subtropical estuarine ecosystems.
Hesterberg SG, Jackson K, Bell SS. Hesterberg SG, et al. Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2121654119. doi: 10.1073/pnas.2121654119. Epub 2022 Aug 8. Proc Natl Acad Sci U S A. 2022. PMID: 35939671 Free PMC article.
References
-
- Sharma S, et al. 2019. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Change 9, 227–231. (10.1038/s41558-018-0393-5) - DOI
-
- Saros JE, et al. 2019. Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. Environ. Res. Lett. 14, 074027 (10.1088/1748-9326/ab2928) - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical