The Order-Disorder Continuum: Linking Predictions of Protein Structure and Disorder through Molecular Simulation - PubMed
- ️Wed Jan 01 2020
Review
The Order-Disorder Continuum: Linking Predictions of Protein Structure and Disorder through Molecular Simulation
Claire C Hsu et al. Sci Rep. 2020.
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions within proteins (IDRs) serve an increasingly expansive list of biological functions, including regulation of transcription and translation, protein phosphorylation, cellular signal transduction, as well as mechanical roles. The strong link between protein function and disorder motivates a deeper fundamental characterization of IDPs and IDRs for discovering new functions and relevant mechanisms. We review recent advances in experimental techniques that have improved identification of disordered regions in proteins. Yet, experimentally curated disorder information still does not currently scale to the level of experimentally determined structural information in folded protein databases, and disorder predictors rely on several different binary definitions of disorder. To link secondary structure prediction algorithms developed for folded proteins and protein disorder predictors, we conduct molecular dynamics simulations on representative proteins from the Protein Data Bank, comparing secondary structure and disorder predictions with simulation results. We find that structure predictor performance from neural networks can be leveraged for the identification of highly dynamic regions within molecules, linked to disorder. Low accuracy structure predictions suggest a lack of static structure for regions that disorder predictors fail to identify. While disorder databases continue to expand, secondary structure predictors and molecular simulations can improve disorder predictor performance, which aids discovery of novel functions of IDPs and IDRs. These observations provide a platform for the development of new, integrated structural databases and fusion of prediction tools toward protein disorder characterization in health and disease.
Conflict of interest statement
The authors declare no competing interests.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cafe/7005769/db3ef4569c13/41598_2020_58868_Fig1_HTML.gif)
(a) Experimental and simulation techniques used to define protein structure and dynamics at different time and length-scales. (“MD” – molecular dynamics; “AFM” – atomic force microscopy; “SAXS” – small angle X-ray scattering; “SANS” – small angle neutron scattering; “EM” – electron microscopy; “NMR” – nuclear magnetic resonance spectroscopy; “smFRET” – single molecule fluorescence resonance energy transfer) (b) Movement at different length-scales (bonds, side chains, residues, and domains) that can be characterized. Visualization with VMD.
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cafe/7005769/36d4a3a59f3b/41598_2020_58868_Fig2_HTML.gif)
% coil content vs order counter for sampled molecules, 3PLW (b) 2R6V (c) 1DZF (d) 3HZ8 (e) 3UMH. The five proteins are ordered from greatest to least coil content.
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cafe/7005769/5051318f2fa4/41598_2020_58868_Fig3_HTML.gif)
Prediction accuracy for all proteins in each of five bins (the test set split into bins of differing helix/beta content) in increasing order, using 2D-CNN as implemented in Supplemental Information. Confidence interval = 0.95.
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cafe/7005769/bfaa71fa1348/41598_2020_58868_Fig4_HTML.gif)
Prediction Accuracy of 5 samples (a) 3PLW (b) 2R6V (c) 1DZF (d) 3HZ8 (e) 3UMH), with increasing order (sampled proteins).
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cafe/7005769/eeae61c0f161/41598_2020_58868_Fig5_HTML.gif)
Predicted disorder with IUPred, DisoPRED, and DISOclust predictors (i) and secondary structure prediction accuracy based on SPIDER3, DeepCNF, 2D-CNN, and SSPRO8 predictors (ii) highlighted with molecular structure longevity through molecular dynamics simulation (i, ii) for (a) 3PLW (b) 2R6V (c) 1DZF (d) 3HZ8 (e) 3UMH. For longevity, blue regions indicate higher longevity regions while white regions indicate lower longevity regions.
![Figure 6](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cafe/7005769/0f1c3e817e76/41598_2020_58868_Fig6_HTML.gif)
Models of the five sampled proteins in this study: (i) 3PLW (ii) 2R6V (iii) 1DZF (iv) 3HZ8 (v) 3UMH. (a) Molecular longevity on a red/blue scale for low/high structural longevity. (b) DSSP assignments with red (coiled), green (beta), and blue (helix) structures.
![Figure 7](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cafe/7005769/2665ddc7e5a3/41598_2020_58868_Fig7_HTML.gif)
Root mean square fluctuation (RMSF) per-residue plots highlighted with molecular structure longevity through molecular dynamics simulation for (a) 3PLW (b) 2R6V (c) 1DZF (d) 3HZ8 (e) 3UMH. For longevity, blue regions indicate higher longevity regions while white regions indicate lower longevity regions.
Similar articles
-
Configurational Entropy of Folded Proteins and Its Importance for Intrinsically Disordered Proteins.
Liu M, Das AK, Lincoff J, Sasmal S, Cheng SY, Vernon RM, Forman-Kay JD, Head-Gordon T. Liu M, et al. Int J Mol Sci. 2021 Mar 26;22(7):3420. doi: 10.3390/ijms22073420. Int J Mol Sci. 2021. PMID: 33810353 Free PMC article.
-
Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins.
Wang W. Wang W. Phys Chem Chem Phys. 2021 Jan 21;23(2):777-784. doi: 10.1039/d0cp05818a. Phys Chem Chem Phys. 2021. PMID: 33355572 Review.
-
Basu S, Bahadur RP. Basu S, et al. J Struct Biol. 2020 Feb 1;209(2):107428. doi: 10.1016/j.jsb.2019.107428. Epub 2019 Nov 20. J Struct Biol. 2020. PMID: 31756456
-
Yang S, Liu H, Zhang Y, Lu H, Chen H. Yang S, et al. J Chem Inf Model. 2019 Nov 25;59(11):4793-4805. doi: 10.1021/acs.jcim.9b00647. Epub 2019 Oct 22. J Chem Inf Model. 2019. PMID: 31613621
-
Lindorff-Larsen K, Kragelund BB. Lindorff-Larsen K, et al. J Mol Biol. 2021 Oct 1;433(20):167196. doi: 10.1016/j.jmb.2021.167196. Epub 2021 Aug 12. J Mol Biol. 2021. PMID: 34390736 Review.
Cited by
-
Illuminating Intrinsically Disordered Proteins with Integrative Structural Biology.
Evans R, Ramisetty S, Kulkarni P, Weninger K. Evans R, et al. Biomolecules. 2023 Jan 7;13(1):124. doi: 10.3390/biom13010124. Biomolecules. 2023. PMID: 36671509 Free PMC article. Review.
-
Gupta MN, Uversky VN. Gupta MN, et al. Protein Sci. 2024 Apr;33(4):e4968. doi: 10.1002/pro.4968. Protein Sci. 2024. PMID: 38532700 Review.
-
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. James EI, et al. Chem Rev. 2022 Apr 27;122(8):7562-7623. doi: 10.1021/acs.chemrev.1c00279. Epub 2021 Sep 7. Chem Rev. 2022. PMID: 34493042 Free PMC article. Review.
-
Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma.
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Kulkarni P, et al. Biophys Rev (Melville). 2022 Mar 17;3(1):011306. doi: 10.1063/5.0080512. eCollection 2022 Mar. Biophys Rev (Melville). 2022. PMID: 38505224 Free PMC article. Review.
-
Gil-Durán C, Sepúlveda RV, Rojas M, Castro-Fernández V, Guixé V, Vaca I, Levicán G, González-Nilo FD, Ravanal MC, Chávez R. Gil-Durán C, et al. Int J Mol Sci. 2022 Feb 19;23(4):2315. doi: 10.3390/ijms23042315. Int J Mol Sci. 2022. PMID: 35216436 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources