Rooibos (Aspalathus linearis) Genome Size Estimation Using Flow Cytometry and K-Mer Analyses - PubMed
- ️Wed Jan 01 2020
Rooibos (Aspalathus linearis) Genome Size Estimation Using Flow Cytometry and K-Mer Analyses
Yamkela Mgwatyu et al. Plants (Basel). 2020.
Abstract
Plant genomes provide information on biosynthetic pathways involved in the production of industrially relevant compounds. Genome size estimates are essential for the initiation of genome projects. The genome size of rooibos (Aspalathus linearis species complex) was estimated using DAPI flow cytometry and k-mer analyses. For flow cytometry, a suitable nuclei isolation buffer, plant tissue and a transport medium for rooibos ecotype samples collected from distant locations were identified. When using radicles from commercial rooibos seedlings, Woody Plant Buffer and Vicia faba as an internal standard, the flow cytometry-estimated genome size of rooibos was 1.24 ± 0.01 Gbp. The estimates for eight wild rooibos growth types did not deviate significantly from this value. K-mer analysis was performed using Illumina paired-end sequencing data from one commercial rooibos genotype. For biocomputational estimation of the genome size, four k-mer analysis methods were investigated: A standard formula and three popular programs (BBNorm, GenomeScope, and FindGSE). GenomeScope estimates were strongly affected by parameter settings, specifically CovMax. When using the complete k-mer frequency histogram (up to 9 × 105), the programs did not deviate significantly, estimating an average rooibos genome size of 1.03 ± 0.04 Gbp. Differences between the flow cytometry and biocomputational estimates are discussed.
Keywords: Aspalathus linearis; ITS region; Rooibos; flow cytometry; genome size; k-mer analysis.
Conflict of interest statement
The authors declare no conflict of interest.
Figures

Flow cytometry histograms for A. linearis leaves from 3 weeks-old commercial rooibos seedlings using Partec buffer (A), LBO1 10X Triton X-100 buffer (B), LBO1 5X Triton X-100 (C), and Woody Plant Buffer (D). Sample 2C (GO/G1 phase) peaks are shown (n = 10).

Flow cytometry histograms of rooibos radicles (A) and cotyledons (B), as well as fresh leaves (C) and silica-dried leaves (D) from two-months-old commercial rooibos seedlings. 2C (G0/G1 phase), 4C (G2 phase) and reference standard (Vicia faba; 2C=26.66 pg) 2C peaks are shown. (n = 10).

Flow cytometry genome size estimates for different rooibos growth types using silica-dried leaf samples (RC = Red Commercial (n = 10), RE = Red Escaped (n = 5), RW = Red Wild (n = 6), WT = Wupperthal Type (n = 9), TT = Tree Type (n = 5), GS = Grey Sprouter (n = 5), NiS=Nieuwoudtville Sprouter (n = 11), NS = Northern Sprouter (n = 5), AT = Algeria Type (n = 5), NT = Nardouwsberg Type (n = 4)).
Similar articles
-
Mgwatyu Y, Cornelissen S, van Heusden P, Stander A, Ranketse M, Hesse U. Mgwatyu Y, et al. Plants (Basel). 2022 Aug 19;11(16):2156. doi: 10.3390/plants11162156. Plants (Basel). 2022. PMID: 36015459 Free PMC article.
-
Al-Qurainy F, Gaafar AZ, Khan S, Nadeem M, Alshameri AM, Tarroum M, Alansi S, Almarri NB, Alfarraj NS. Al-Qurainy F, et al. Plants (Basel). 2021 Jul 3;10(7):1362. doi: 10.3390/plants10071362. Plants (Basel). 2021. PMID: 34371565 Free PMC article.
-
Transcriptomics of the Rooibos (Aspalathus linearis) Species Complex.
Stander EA, Williams W, Mgwatyu Y, Heusden PV, Rautenbach F, Marnewick J, Roes-Hill ML, Hesse U. Stander EA, et al. BioTech (Basel). 2020 Sep 23;9(4):19. doi: 10.3390/biotech9040019. BioTech (Basel). 2020. PMID: 35822822 Free PMC article.
-
K-Mer-Based Genome Size Estimation in Theory and Practice.
Hesse U. Hesse U. Methods Mol Biol. 2023;2672:79-113. doi: 10.1007/978-1-0716-3226-0_4. Methods Mol Biol. 2023. PMID: 37335470 Review.
-
McKay DL, Blumberg JB. McKay DL, et al. Phytother Res. 2007 Jan;21(1):1-16. doi: 10.1002/ptr.1992. Phytother Res. 2007. PMID: 16927447 Review.
Cited by
-
Tomaszewska P, Pellny TK, Hernández LM, Mitchell RAC, Castiblanco V, de Vega JJ, Schwarzacher T, Heslop-Harrison PJS. Tomaszewska P, et al. Genes (Basel). 2021 Jun 23;12(7):957. doi: 10.3390/genes12070957. Genes (Basel). 2021. PMID: 34201593 Free PMC article.
-
Genomic variation, environmental adaptation, and feralization in ramie, an ancient fiber crop.
Wu ZY, Chapman MA, Liu J, Milne RI, Zhao Y, Luo YH, Zhu GF, Cadotte MW, Luan MB, Fan PZ, Monro AK, Li ZP, Corlett RT, Li DZ. Wu ZY, et al. Plant Commun. 2024 Aug 12;5(8):100942. doi: 10.1016/j.xplc.2024.100942. Epub 2024 May 8. Plant Commun. 2024. PMID: 38720463 Free PMC article.
-
Genome survey and genetic characterization of Acacia pachyceras O. Schwartz.
Habibi N, Al Salameen F, Vyas N, Rahman M, Kumar V, Shajan A, Zakir F, Razzack NA, Al Doaij B. Habibi N, et al. Front Plant Sci. 2023 Feb 16;14:1062401. doi: 10.3389/fpls.2023.1062401. eCollection 2023. Front Plant Sci. 2023. PMID: 36875582 Free PMC article.
-
Genome Size Variation and Evolution Driven by Transposable Elements in the Genus Oryza.
Dai SF, Zhu XG, Hutang GR, Li JY, Tian JQ, Jiang XH, Zhang D, Gao LZ. Dai SF, et al. Front Plant Sci. 2022 Jul 7;13:921937. doi: 10.3389/fpls.2022.921937. eCollection 2022. Front Plant Sci. 2022. PMID: 35874017 Free PMC article.
-
Mgwatyu Y, Cornelissen S, van Heusden P, Stander A, Ranketse M, Hesse U. Mgwatyu Y, et al. Plants (Basel). 2022 Aug 19;11(16):2156. doi: 10.3390/plants11162156. Plants (Basel). 2022. PMID: 36015459 Free PMC article.
References
-
- Brink C., Postma A., Jacobs K. Rhizobial diversity and function in rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.) plants: A review. S. Afr. J. Bot. 2017;110:80–86. doi: 10.1016/j.sajb.2016.10.025. - DOI
-
- Malgas R., Potts A.J., Oettlé N.M., Koelle B., Todd S.W., Verboom G.A., Hoffman M.T. Distribution quantitative morphological variation and preliminary molecular analysis of different growth forms of wild rooibos (Aspalathus linearis) in the northern Cederberg and on the Bokkeveld Plateau. S. Afr. J. Bot. 2010;76:72–81. doi: 10.1016/j.sajb.2009.07.004. - DOI
-
- Biénabe E., Marie-Vivien D. Institutionalizing Geographical Indications in Southern Countries: Lessons Learned from Basmati and Rooibos. World Dev. 2017;98:58–67. doi: 10.1016/j.worlddev.2015.04.004. - DOI
-
- Street R.A., Prinsloo G. Commercially Important Medicinal Plants of South Africa: A Review. J. Chem. 2013;2013:1–16. doi: 10.1155/2013/205048. - DOI
-
- Muller C., Malherbe C., Chellan N., Yagasaki K., Miura Y., Joubert E. Potential of rooibos, its major C-glucosyl flavonoids, and Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid in prevention of metabolic syndrome. Crit. Rev. Food Sci. Nutr. 2018;58:227–246. doi: 10.1080/10408398.2016.1157568. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous