A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo - PubMed
- ️Invalid Date
. 1988 Nov;2(11):1496-511.
doi: 10.1101/gad.2.11.1496.
Affiliations
- PMID: 3209069
- DOI: 10.1101/gad.2.11.1496
Free article
A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo
U Mayer et al. Genes Dev. 1988 Nov.
Free article
Abstract
Mutations in the genes spitz (spi), Star (S), single-minded (sim), pointed (pnt), rhomboid (rho) (all zygotic), and sichel (sic) (maternal), collectively called the spitz group, cause similar pattern alterations in ventral ectodermal derivatives of the Drosophila embryo. The cuticle structures lacking in mutant embryos normally derive from longitudinal strips of the ventro-lateral blastoderm. Defects were found in the median part of the central nervous system in whole-mount embryos stained with anti-HRP (horseradish peroxidase) antibodies. In addition, the nerve cells expressing the even-skipped protein appeared abnormally arranged. These results suggest that groups of cells from the same region, including both epidermal and neural precursor cells, require spitz-group gene activity for normal development. The members of the spitz group differ from one another: sim affects a more median strip of the ventral ectoderm than the other zygotic genes and pnt causes separation rather than deletion of pattern elements. As shown by pole cell transplantations, spi and S are also required for normal development of the female germ line, while sim, rho, and pnt appear to be exclusively zygotically expressed, and the maternal gene sic acts in the germ line autonomously. Some embryos produced by sic-homozygous females differentiate the spitz phenotype, others develop normally or die early. Of all the spitz-group genes, sim appears to have the most specific effect on the embryonic pattern. The significance of the spitz-group phenotypes for the dorso-ventral pattern formation is discussed.
Similar articles
-
Golembo M, Raz E, Shilo BZ. Golembo M, et al. Development. 1996 Nov;122(11):3363-70. doi: 10.1242/dev.122.11.3363. Development. 1996. PMID: 8951053
-
Lee CM, Yu DS, Crews ST, Kim SH. Lee CM, et al. Int J Dev Biol. 1999 Jul;43(4):305-15. Int J Dev Biol. 1999. PMID: 10470647
-
Regulation and function of the terminal gap gene huckebein in the Drosophila blastoderm.
Brönner G, Jäckle H. Brönner G, et al. Int J Dev Biol. 1996 Feb;40(1):157-65. Int J Dev Biol. 1996. PMID: 8735925 Review.
-
Skeath JB. Skeath JB. Bioessays. 1999 Nov;21(11):922-31. doi: 10.1002/(SICI)1521-1878(199911)21:11<922::AID-BIES4>3.0.CO;2-T. Bioessays. 1999. PMID: 10517865 Review.
Cited by
-
Lee YM, Sun YH. Lee YM, et al. PLoS Genet. 2015 Apr 24;11(4):e1005187. doi: 10.1371/journal.pgen.1005187. eCollection 2015 Apr. PLoS Genet. 2015. PMID: 25909451 Free PMC article.
-
Genetic dissection of pointed, a Drosophila gene encoding two ETS-related proteins.
Scholz H, Deatrick J, Klaes A, Klämbt C. Scholz H, et al. Genetics. 1993 Oct;135(2):455-68. doi: 10.1093/genetics/135.2.455. Genetics. 1993. PMID: 8244007 Free PMC article.
-
Genetic analysis of the wing vein pattern of Drosophila.
Diaz-Benjumea FJ, García-Bellido A. Diaz-Benjumea FJ, et al. Rouxs Arch Dev Biol. 1990 Mar;198(6):336-354. doi: 10.1007/BF00383772. Rouxs Arch Dev Biol. 1990. PMID: 28305413
-
Kimble J, Nüsslein-Volhard C. Kimble J, et al. Dev Biol. 2022 May;485:93-122. doi: 10.1016/j.ydbio.2022.02.013. Epub 2022 Mar 2. Dev Biol. 2022. PMID: 35247454 Free PMC article.
-
Guenin L, Raharijaona M, Houlgatte R, Baba-Aissa F. Guenin L, et al. BMC Genomics. 2010 Jan 19;11:47. doi: 10.1186/1471-2164-11-47. BMC Genomics. 2010. PMID: 20085633 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials