Two-Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage - PubMed
- ️Wed Jan 01 2020
Review
. 2020 Mar 20;13(6):1114-1154.
doi: 10.1002/cssc.201903245. Epub 2020 Mar 9.
Affiliations
- PMID: 32150349
- DOI: 10.1002/cssc.201903245
Review
Two-Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage
Yingxi Zhang et al. ChemSusChem. 2020.
Abstract
On the heels of exacerbating environmental concerns and ever-growing global energy demand, development of high-performance renewable energy-storage and -conversion devices has aroused great interest. The electrode materials, which are the critical components in electrochemical energy storage (EES) devices, largely determine the energy-storage properties, and the development of suitable active electrode materials is crucial to achieve efficient and environmentally friendly EES technologies albeit the challenges. Two-dimensional transition-metal chalcogenides (2D TMDs) are promising electrode materials in alkali metal ion batteries and supercapacitors because of ample interlayer space, large specific surface areas, fast ion-transfer kinetics, and large theoretical capacities achieved through intercalation and conversion reactions. However, they generally suffer from low electronic conductivities as well as substantial volume change and irreversible side reactions during the charge/discharge process, which result in poor cycling stability, poor rate performance, and low round-trip efficiency. In this Review, recent advances of 2D TMDs-based electrode materials for alkali metal-ion energy-storage devices with the focus on lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), potassium-ion batteries (PIBs), high-energy lithium-sulfur (Li-S), and lithium-air (Li-O2 ) batteries are described. The challenges and future directions of 2D TMDs-based electrode materials for high-performance LIBs, SIBs, PIBs, Li-S, and Li-O2 batteries as well as emerging alkali metal-ion capacitors are also discussed.
Keywords: Two-dimensional; batteries; capacitors; chalcogenides; transition metals.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Transition metal chalcogenides for next-generation energy storage.
Palchoudhury S, Ramasamy K, Han J, Chen P, Gupta A. Palchoudhury S, et al. Nanoscale Adv. 2023 Feb 24;5(10):2724-2742. doi: 10.1039/d2na00944g. eCollection 2023 May 16. Nanoscale Adv. 2023. PMID: 37205287 Free PMC article. Review.
-
Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
Yu SH, Feng X, Zhang N, Seok J, Abruña HD. Yu SH, et al. Acc Chem Res. 2018 Feb 20;51(2):273-281. doi: 10.1021/acs.accounts.7b00487. Epub 2018 Jan 26. Acc Chem Res. 2018. PMID: 29373023
-
Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage.
Yun Q, Li L, Hu Z, Lu Q, Chen B, Zhang H. Yun Q, et al. Adv Mater. 2020 Jan;32(1):e1903826. doi: 10.1002/adma.201903826. Epub 2019 Sep 30. Adv Mater. 2020. PMID: 31566269 Review.
-
Two-Dimensional Materials to Address the Lithium Battery Challenges.
Rojaee R, Shahbazian-Yassar R. Rojaee R, et al. ACS Nano. 2020 Mar 24;14(3):2628-2658. doi: 10.1021/acsnano.9b08396. Epub 2020 Mar 12. ACS Nano. 2020. PMID: 32083832
-
Combination of lightweight elements and nanostructured materials for batteries.
Chen J, Cheng F. Chen J, et al. Acc Chem Res. 2009 Jun 16;42(6):713-23. doi: 10.1021/ar800229g. Acc Chem Res. 2009. PMID: 19354236
Cited by
-
Dey S, Roy A, Mujib SB, Krishnappa M, Zak A, Singh G. Dey S, et al. ACS Omega. 2024 Apr 1;9(15):17125-17136. doi: 10.1021/acsomega.3c09758. eCollection 2024 Apr 16. ACS Omega. 2024. PMID: 38645312 Free PMC article.
-
Transition metal chalcogenides for next-generation energy storage.
Palchoudhury S, Ramasamy K, Han J, Chen P, Gupta A. Palchoudhury S, et al. Nanoscale Adv. 2023 Feb 24;5(10):2724-2742. doi: 10.1039/d2na00944g. eCollection 2023 May 16. Nanoscale Adv. 2023. PMID: 37205287 Free PMC article. Review.
-
Strange LE, Li X, Wornyo E, Ashaduzzaman M, Pan S. Strange LE, et al. Chem Biomed Imaging. 2023 Mar 23;1(2):110-120. doi: 10.1021/cbmi.3c00014. eCollection 2023 May 22. Chem Biomed Imaging. 2023. PMID: 37235187 Free PMC article. Review.
-
Design principles for 2D transition metal dichalcogenides toward lithium-sulfur batteries.
Yu X, Ding Y, Sun J. Yu X, et al. iScience. 2023 Jul 27;26(9):107489. doi: 10.1016/j.isci.2023.107489. eCollection 2023 Sep 15. iScience. 2023. PMID: 37601770 Free PMC article. Review.
-
Ramasubramanian B, Reddy MV, Zaghib K, Armand M, Ramakrishna S. Ramasubramanian B, et al. Nanomaterials (Basel). 2021 Sep 22;11(10):2476. doi: 10.3390/nano11102476. Nanomaterials (Basel). 2021. PMID: 34684917 Free PMC article. Review.
References
-
- D. Larcher, J. M. Tarascon, Nat. Chem. 2015, 7, 19-29.
-
- K. Turcheniuk, D. Bondarev, V. Singhal, G. Yushin, Ten years left to redesign lithium-ion batteries, Nature Publishing Group, 2018, pp. 467-470.
-
- W. Van Schalkwijk, B. Scrosati in Advances in Lithium-Ion Batteries (Eds: W. Van Schalkwijk, B. Scrosati), Springer, Heidelberg, 2002, pp. 1-5.
-
- S. Yang, F. Zhang, H. Ding, P. He, H. Zhou, Joule 2018, 2, 1648-1651.
-
- K. N. Wood, R. O'Hayre, S. Pylypenko, Energy Environ. Sci. 2014, 7, 1212-1249.
Publication types
Grants and funding
- 21875080/National Natural Science Foundation of China
- 51572100/National Natural Science Foundation of China
- 51504171/National Natural Science Foundation of China
- 2018AAA011/Major Project of Technology Innovation of Hubei Province
- 2019CFA020/Natural Science Fund for Creative Groups of Hubei Province
- 2019ZYYD024/Special Projects for Local Science and Technology Development Guided by the Chinese Central Government
- 2016JCTD101/Henan University of Science and Technology
- 7005015/City University of Hong Kong Strategic Research Grant (SRG)
- CityU 11205617/ong Kong Research Grants Council (RGC) General Research Funds (GRF)
LinkOut - more resources
Full Text Sources
Other Literature Sources