pubmed.ncbi.nlm.nih.gov

Electrohypersensitivity as a Newly Identified and Characterized Neurologic Pathological Disorder: How to Diagnose, Treat, and Prevent It - PubMed

  • ️Wed Jan 01 2020

Review

Electrohypersensitivity as a Newly Identified and Characterized Neurologic Pathological Disorder: How to Diagnose, Treat, and Prevent It

Dominique Belpomme et al. Int J Mol Sci. 2020.

Abstract

Since 2009, we built up a database which presently includes more than 2000 electrohypersensitivity (EHS) and/or multiple chemical sensitivity (MCS) self-reported cases. This database shows that EHS is associated in 30% of the cases with MCS, and that MCS precedes the occurrence of EHS in 37% of these EHS/MCS-associated cases. EHS and MCS can be characterized clinically by a similar symptomatic picture, and biologically by low-grade inflammation and an autoimmune response involving autoantibodies against O-myelin. Moreover, 80% of the patients with EHS present with one, two, or three detectable oxidative stress biomarkers in their peripheral blood, meaning that overall these patients present with a true objective somatic disorder. Moreover, by using ultrasonic cerebral tomosphygmography and transcranial Doppler ultrasonography, we showed that cases have a defect in the middle cerebral artery hemodynamics, and we localized a tissue pulsometric index deficiency in the capsulo-thalamic area of the temporal lobes, suggesting the involvement of the limbic system and the thalamus. Altogether, these data strongly suggest that EHS is a neurologic pathological disorder which can be diagnosed, treated, and prevented. Because EHS is becoming a new insidious worldwide plague involving millions of people, we ask the World Health Organization (WHO) to include EHS as a neurologic disorder in the international classification of diseases.

Keywords: O-myelin; electrohypersensibility; electromagnetic fields; extremely low frequency; histamine; inflammation; melatonin; multiple chemical sensitivity; neurologic disease; oxidative stress; radiofrequency.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interests. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1

Examples of skin lesions observed on the hand of an EHS-bearing patient (A) and of an EHS/MCS-bearing patient (B). (Photographs are issued from the database).

Figure 2
Figure 2

Percentage of EHS self-reported patients having positive thiobarbituric acid reactive substances (TBARS), oxidized glutathione (GSSG), and/or NTT oxidative stress biomarkers measured in the peripheral blood, according to Reference [22]. ■ Corresponds to NTT, TBARS, and GSSG, i.e., all three biomarkers measured in 14 of the 32 included patients. ☐ Corresponds to TBARS and GSSG analyzed in all 32 included patients. “Positive” biomarkers correspond to patients having one, two, or three markers with levels above the upper normal limits, and “total” corresponds to patients having at least one positive biomarkers, i.e., having one, two, or possibly three positive biomarkers.

Figure 3
Figure 3

Examples of diagrams obtained from the database by using ultrasonic cerebral tomosphygmography (UCTS), exploring the global centimetric ultrasound tissue pulsatility in the two temporal lobes of a normal subject (A) and of an EHS self-reported patient (B), according to References [11,12]. Measurements are expressed as pulsometric index (PI). Note that, in A and B, mean values of PI in each explored area are recorded from the cortex to the internal part of each temporal lobe (i.e., from left to right for the right lobe, and from right to left for the left lobe). In addition, note that, in A (normal subject), all values are over the median normal PI values, whereas, in B (EHS self-reported patient), values in the so called capsulo-thalamic areas (the fifth and the second column for the right and left temporal lobes, respectively) are significantly under the median normal values, suggesting that the limbic system and the thalamus in each temporal lobe may be involved in EHS, as exemplified in this patient.

Figure 4
Figure 4

Abnormal functional MRI brain scan in patients complaining of EHS after long-term exposure to EMF, according to Reference [31].

Figure 5
Figure 5

Example of diagrams obtained from the database by using UCTS exploring the global centimetric ultrasound pulsatility in the two temporal lobes of an EHS subject at inclusion (Ti) and three months later (T3) after fermented papaya preparation (FPP) supplementation (9 g per day in two divided doses), according to Reference [33].

Figure 6
Figure 6

EHS/MCS physiopathological model based on low-grade neuroinflammation and oxidative/nitrosative stress-induced blood–brain barrier disruption, according to Reference [10].

Figure 7
Figure 7

Estimated prevalence (%) of people around the world who consider themselves to be electrohypersensitive, plotted over time in a normal distribution graph, according to Reference [73].

Similar articles

Cited by

References

    1. Rea W.J., Pan Y., Fenyves E.F., Sujisawa I., Suyama H., Samadi N., Ross G.H. Electromagnetic field sensitivity. J. Bioeletricity. 1991;10:214–256. doi: 10.3109/15368379109031410. - DOI
    1. Bergqvist U., Vogel E. A Report Prepared by a European Group of Experts for the European Commission, DGV. Swedish National Institute for Working Life; Stockholm, Sweden: 1997. [(accessed on 6 December 2019)]. Possible health implications of subjective symptoms and electromagnetic fields. Arbete Och Hälsa, 19. Available online: http://www2.niwl.se/forlag/en/
    1. Santini R., Seigne M., Bonhomme-Faivre L., Bouffet S., Defrasme E., Sage M. Symptoms experienced by users of digital cellular phones: A study of a French engineering school. Electromagn. Biol. Med. 2002;21:81–88. doi: 10.1081/JBC-120003113. - DOI
    1. Santini R., Santini P., LeRuz P., Danze J.M., Seigne M. Survey study of people living in the vicinity of cellular phone base stations. Electromagn. Biol. Med. 2003;22:41–49. doi: 10.1081/JBC-120020353. - DOI
    1. Mild K.H., Repacholi M., van Deventer E., Ravazzani P., editors. Proceedings of the WHO International Seminar and Working Group Meeting on EMF Hypersensitivity, Prague, Czech Republic, 25–27 October 2004. World Health Organization; Geneva, Switzerland: 2006. Electromagnetic hypersensitivity.

Publication types

MeSH terms

Substances