pubmed.ncbi.nlm.nih.gov

Association of Daily Step Count and Step Intensity With Mortality Among US Adults - PubMed

  • ️Wed Jan 01 2020

Association of Daily Step Count and Step Intensity With Mortality Among US Adults

Pedro F Saint-Maurice et al. JAMA. 2020.

Abstract

Importance: It is unclear whether the number of steps per day and the intensity of stepping are associated with lower mortality.

Objective: Describe the dose-response relationship between step count and intensity and mortality.

Design, setting, and participants: Representative sample of US adults aged at least 40 years in the National Health and Nutrition Examination Survey who wore an accelerometer for up to 7 days ( from 2003-2006). Mortality was ascertained through December 2015.

Exposures: Accelerometer-measured number of steps per day and 3 step intensity measures (extended bout cadence, peak 30-minute cadence, and peak 1-minute cadence [steps/min]). Accelerometer data were based on measurements obtained during a 7-day period at baseline.

Main outcomes and measures: The primary outcome was all-cause mortality. Secondary outcomes were cardiovascular disease (CVD) and cancer mortality. Hazard ratios (HRs), mortality rates, and 95% CIs were estimated using cubic splines and quartile classifications adjusting for age; sex; race/ethnicity; education; diet; smoking status; body mass index; self-reported health; mobility limitations; and diagnoses of diabetes, stroke, heart disease, heart failure, cancer, chronic bronchitis, and emphysema.

Results: A total of 4840 participants (mean age, 56.8 years; 2435 [54%] women; 1732 [36%] individuals with obesity) wore accelerometers for a mean of 5.7 days for a mean of 14.4 hours per day. The mean number of steps per day was 9124. There were 1165 deaths over a mean 10.1 years of follow-up, including 406 CVD and 283 cancer deaths. The unadjusted incidence density for all-cause mortality was 76.7 per 1000 person-years (419 deaths) for the 655 individuals who took less than 4000 steps per day; 21.4 per 1000 person-years (488 deaths) for the 1727 individuals who took 4000 to 7999 steps per day; 6.9 per 1000 person-years (176 deaths) for the 1539 individuals who took 8000 to 11 999 steps per day; and 4.8 per 1000 person-years (82 deaths) for the 919 individuals who took at least 12 000 steps per day. Compared with taking 4000 steps per day, taking 8000 steps per day was associated with significantly lower all-cause mortality (HR, 0.49 [95% CI, 0.44-0.55]), as was taking 12 000 steps per day (HR, 0.35 [95% CI, 0.28-0.45]). Unadjusted incidence density for all-cause mortality by peak 30 cadence was 32.9 per 1000 person-years (406 deaths) for the 1080 individuals who took 18.5 to 56.0 steps per minute; 12.6 per 1000 person-years (207 deaths) for the 1153 individuals who took 56.1 to 69.2 steps per minute; 6.8 per 1000 person-years (124 deaths) for the 1074 individuals who took 69.3 to 82.8 steps per minute; and 5.3 per 1000 person-years (108 deaths) for the 1037 individuals who took 82.9 to 149.5 steps per minute. Greater step intensity was not significantly associated with lower mortality after adjustment for total steps per day (eg, highest vs lowest quartile of peak 30 cadence: HR, 0.90 [95% CI, 0.65-1.27]; P value for trend = .34).

Conclusions and relevance: Based on a representative sample of US adults, a greater number of daily steps was significantly associated with lower all-cause mortality. There was no significant association between step intensity and mortality after adjusting for total steps per day.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: Dr Bassett reported being a paid member of the ActiGraph scientific advisory board from 2013 to 2019 and joining the present study in 2018. The device used in this study was selected in 2002, prior to any involvement by Dr Bassett, and ActiGraph had no involvement in the design, conduct, or interpretation of this study. No other disclosures were reported.

Figures

Figure 1.
Figure 1.. Steps per Day and All-Cause Mortality in a Study of the Association of Daily Step Count and Step Intensity With Mortality Among US Adults Aged at Least 40 Years

Mortality rates were adjusted for age; diet quality; sex; race/ethnicity; body mass index; education; alcohol consumption; smoking status; diagnoses of diabetes, stroke, coronary heart disease, heart failure, cancer, chronic bronchitis, and emphysema; mobility limitation; and self-reported general health. Rates were computed using the 2003 mortality rate for US adults (11.4 deaths per 1000 adults per year). Models included US population and study design weights to account for the complex survey design and models were replicated 5 times to account for imputed steps data. Error bars indicate 95% CIs.

Figure 2.
Figure 2.. Steps per Day and Mortality by Sex, Age, and Race/Ethnicity in a Study of the Association of Step Count and Intensity With Mortality

Mortality rates were adjusted for age; diet quality; sex; race/ethnicity; body mass index; education; alcohol consumption; smoking status; 7 comorbid conditions; mobility limitation; and self-reported general health (not including the demographic of interest). Rates were computed using 2003 US mortality rates by sex (men, 13.0 deaths per 1000 adults/y; women, 9.9 deaths per 1000 adults/y), age (40-49 y, 3.1 deaths per 1000 adults/y; 50-64 y, 9.4 deaths per 1000 adults/y; ≥65 y, 35.8 deaths per 1000 adults/y), and race/ethnicity (non-Hispanic white, 10.0 deaths per 1000 adults/y; non-Hispanic black, 13.8 deaths per 1000 adults/y; Mexican American, 5.6 deaths per 1000 adults/y). Models included US population and study design weights to account for the complex survey design and were replicated 5 times to account for imputed steps data.

Figure 3.
Figure 3.. Joint Associations Between Steps per Day, Step Intensity, and All-Cause Mortality in a Study of the Association of Daily Step Count and Step Intensity With Mortality Among US Adults Aged at Least 40 Years

Mortality rates were adjusted for age; diet quality; sex; race/ethnicity; body mass index; education; alcohol consumption; smoking status; diagnoses of diabetes, stroke, coronary heart disease, heart failure, cancer, chronic bronchitis, and emphysema; mobility limitation; and self-reported general health. Rates were computed using the 2003 mortality rate for US adults (11.4 deaths per 1000 adults per year). Blank cells indicate joint classifications with 0 participants and instances in which mortality rates could not be estimated. Models included US population and study design weights to account for the complex survey design and models were replicated 5 times to account for imputed steps data.

Figure 4.
Figure 4.. Steps per Day and Mortality From Cardiovascular Disease (CVD) and Cancer in a Study of the Association of Daily Step Count and Step Intensity With Mortality Among US Adults Aged at Least 40 Years

Mortality rates were adjusted for age; diet quality; sex; race/ethnicity; body mass index; education; alcohol consumption; smoking status; diagnoses of diabetes, stroke, coronary heart disease, heart failure, cancer, chronic bronchitis, and emphysema; mobility limitation; and self-reported general health. Rates were computed using 2003 mortality rates for US adults (cardiovascular disease, 3.9 deaths per 1000 adults per year; cancer, 3.3 deaths per 1000 adults per year). Models included US population and study design weights to account for the complex survey design and models were replicated 5 times to account for imputed steps data. Error bars indicate 95% CIs.

Similar articles

Cited by

References

    1. Lobelo F, Rohm Young D, Sallis R, et al. ; American Heart Association Physical Activity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Epidemiology and Prevention; Council on Clinical Cardiology; Council on Genomic and Precision Medicine; Council on Cardiovascular Surgery and Anesthesia; and Stroke Council . Routine assessment and promotion of physical activity in healthcare settings: a scientific statement from the American Heart Association. Circulation. 2018;137(18):e495-e522. doi:10.1161/CIR.0000000000000559 - DOI - PubMed
    1. Jefferis BJ, Parsons TJ, Sartini C, et al. . Objectively measured physical activity, sedentary behaviour and all-cause mortality in older men: does volume of activity matter more than pattern of accumulation? Br J Sports Med. 2019;53(16):1013-1020. doi:10.1136/bjsports-2017-098733 - DOI - PMC - PubMed
    1. Lee IM, Shiroma EJ, Kamada M, Bassett DR Jr, Matthews CE, Buring JE. Association of step volume and intensity with all-cause mortality in older women. JAMA Intern Med. 2019;179(8):1105-1112. doi:10.1001/jamainternmed.2019.0899 - DOI - PMC - PubMed
    1. Waschki B, Kirsten A, Holz O, et al. . Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest. 2011;140(2):331-342. doi:10.1378/chest.10-2521 - DOI - PubMed
    1. Izawa KP, Watanabe S, Oka K, et al. . Usefulness of step counts to predict mortality in Japanese patients with heart failure. Am J Cardiol. 2013;111(12):1767-1771. doi:10.1016/j.amjcard.2013.02.034 - DOI - PubMed

Publication types

MeSH terms