Early isotopic evidence for maize as a staple grain in the Americas - PubMed
- ️Wed Jan 01 2020
. 2020 Jun 3;6(23):eaba3245.
doi: 10.1126/sciadv.aba3245. eCollection 2020 Jun.
Keith M Prufer 2 3 , Brendan J Culleton 4 , Richard J George 5 , Mark Robinson 6 , Willa R Trask 7 , Gina M Buckley 5 , Emily Moes 2 , Emily J Kate 5 , Thomas K Harper 5 , Lexi O'Donnell 8 , Erin E Ray 2 , Ethan C Hill 2 , Asia Alsgaard 2 , Christopher Merriman 2 , Clayton Meredith 9 , Heather J H Edgar 2 , Jaime J Awe 10 , Said M Gutierrez 11
Affiliations
- PMID: 32537504
- PMCID: PMC7269666
- DOI: 10.1126/sciadv.aba3245
Early isotopic evidence for maize as a staple grain in the Americas
Douglas J Kennett et al. Sci Adv. 2020.
Abstract
Maize is a cultigen of global economic importance, but when it first became a staple grain in the Americas, was unknown and contested. Here, we report direct isotopic dietary evidence from 52 radiocarbon-dated human skeletons from two remarkably well-preserved rock-shelter contexts in the Maya Mountains of Belize spanning the past 10,000 years. Individuals dating before ~4700 calendar years before present (cal B.P.) show no clear evidence for the consumption of maize. Evidence for substantial maize consumption (~30% of total diet) appears in some individuals between 4700 and 4000 cal B.P. Isotopic evidence after 4000 cal B.P. indicates that maize became a persistently used staple grain comparable in dietary significance to later maize agriculturalists in the region (>70% of total diet). These data provide the earliest definitive evidence for maize as a staple grain in the Americas.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures

Paleoenvironmental sequences are shown as green triangles as follows: (A) San Andres, Tabasco (36); (B) SOC05-2 (19); (C) Lake Puerto Arturo (11); (D) Peten Lakes region (57); (E) Cob Swamp (38); (F) Pulltrowser Swamp (38); and (G) Lake Yojoa (58). Archeological sites with early maize are shown as red dots: (1) Ocampo Caves (59), (2) Xihuatoxtla (3), (3) El Riego (60), (4) San Marcos (60), (5) Coxcatlán (60), (6) Guilá Naquitz (5), and (7) Caye Coco (25). Map was produced in ArcGIS 10.4, with all subsequent layout and design performed in Photoshop CC 14.2.

(A) Pre-maize diet (9600–4700 cal B.P.), (B) transitional maize diet (4700–4000 cal B.P.), and (C) staple maize diet (4000–1000 cal B.P.). For more details on the skeletal sample in this study, see section S1 and age model parameters in section S2. The radiocarbon plot produced in OxCal 4.2 with subsequent layout and design was performed in Illustrator CC 17.1.

(22) (A) δ13Ccollagen versus δ15Ncollagen. (B) δ13Ccollagen versus δ13Capatite plotted against dietary regression lines from experimental feeding studies (33). (C) Function 1 versus function 2 discriminant analysis plotted against data from experimental feeding studies (35). Data analysis in R, with subsequent layout and design performed in Illustrator CC 17.1.

The earliest radiocarbon dates associated with microbotanical evidence for maize in the Balsas region (Xihuatoxtla) (3), Mexico’s Gulf Coast (San Andrés) (36), and the Maya region (SOC05-2, Caye Coco, Lake Yojoa, Cob Swamp, and Lake Puerto Arturo) (9, 10, 12, 13, 16) are also shown. Summed probability distributions and dietary phases produced in OxCal 4.2 with subsequent layout and design were performed in Illustrator CC 17.1.
Similar articles
-
Kennett DJ, Thakar HB, VanDerwarker AM, Webster DL, Culleton BJ, Harper TK, Kistler L, Scheffler TE, Hirth K. Kennett DJ, et al. Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):9026-9031. doi: 10.1073/pnas.1705052114. Epub 2017 Aug 7. Proc Natl Acad Sci U S A. 2017. PMID: 28784803 Free PMC article.
-
South-to-north migration preceded the advent of intensive farming in the Maya region.
Kennett DJ, Lipson M, Prufer KM, Mora-Marín D, George RJ, Rohland N, Robinson M, Trask WR, Edgar HHJ, Hill EC, Ray EE, Lynch P, Moes E, O'Donnell L, Harper TK, Kate EJ, Ramos J, Morris J, Gutierrez SM, Ryan TM, Culleton BJ, Awe JJ, Reich D. Kennett DJ, et al. Nat Commun. 2022 Mar 22;13(1):1530. doi: 10.1038/s41467-022-29158-y. Nat Commun. 2022. PMID: 35318319 Free PMC article.
-
Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador.
Zarrillo S, Pearsall DM, Raymond JS, Tisdale MA, Quon DJ. Zarrillo S, et al. Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5006-11. doi: 10.1073/pnas.0800894105. Epub 2008 Mar 24. Proc Natl Acad Sci U S A. 2008. PMID: 18362336 Free PMC article.
-
Sugiyama N, Sugiyama S, Cagnato C, France CAM, Iriki A, Hughes KS, Singleton RR, Thornton E, Hofman CA. Sugiyama N, et al. Proc Natl Acad Sci U S A. 2022 Nov 22;119(47):e2212431119. doi: 10.1073/pnas.2212431119. Epub 2022 Nov 21. Proc Natl Acad Sci U S A. 2022. PMID: 36399550 Free PMC article.
-
Mining maize diversity and improving its nutritional aspects within agro-food systems.
Palacios-Rojas N, McCulley L, Kaeppler M, Titcomb TJ, Gunaratna NS, Lopez-Ridaura S, Tanumihardjo SA. Palacios-Rojas N, et al. Compr Rev Food Sci Food Saf. 2020 Jul;19(4):1809-1834. doi: 10.1111/1541-4337.12552. Epub 2020 May 1. Compr Rev Food Sci Food Saf. 2020. PMID: 33337075 Review.
Cited by
-
Impact of research on maize production challenges in Hungary.
Ssemugenze B, Ocwa A, Bojtor C, Illés Á, Esimu J, Nagy J. Ssemugenze B, et al. Heliyon. 2024 Feb 14;10(6):e26099. doi: 10.1016/j.heliyon.2024.e26099. eCollection 2024 Mar 30. Heliyon. 2024. PMID: 38510009 Free PMC article. Review.
-
Talamo S, Fewlass H, Maria R, Jaouen K. Talamo S, et al. Sci Technol Archaeol Res. 2021 Jul 20;7(1):62-77. doi: 10.1080/20548923.2021.1944479. eCollection 2021. Sci Technol Archaeol Res. 2021. PMID: 34381618 Free PMC article.
-
Early specialized maritime and maize economies on the north coast of Peru.
Tung TA, Dillehay TD, Feranec RS, DeSantis LRG. Tung TA, et al. Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32308-32319. doi: 10.1073/pnas.2009121117. Epub 2020 Dec 7. Proc Natl Acad Sci U S A. 2020. PMID: 33288695 Free PMC article.
-
Ebert CE, Rand AJ, Green-Mink K, Hoggarth JA, Freiwald C, Awe JJ, Trask WR, Yaeger J, Brown MK, Helmke C, Guerra RA, Danforth M, Kennett DJ. Ebert CE, et al. PLoS One. 2021 Aug 12;16(8):e0254992. doi: 10.1371/journal.pone.0254992. eCollection 2021. PLoS One. 2021. PMID: 34383771 Free PMC article.
-
The Caribbean and Mesoamerica Biogeochemical Isotope Overview (CAMBIO).
Ebert CE, Hixon SW, Buckley GM, George RJ, Pacheco-Fores SI, Palomo JM, Sharpe AE, Solís-Torres ÓR, Davis JB, Fernandes R, Kennett DJ. Ebert CE, et al. Sci Data. 2024 Apr 8;11(1):349. doi: 10.1038/s41597-024-03167-6. Sci Data. 2024. PMID: 38589396 Free PMC article.
References
-
- Shiferaw B., Prasanna B. M., Hellin J., Bänziger M., Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 3, 307 (2011).
-
- Doebley J., The genetics of maize evolution. Annu. Rev. Genet. 38, 37–59 (2004). - PubMed
-
- Piperno D. R., The origins of plant cultivation and domestication in the New World tropics: Patterns, process, and new developments. Curr. Anthropol. 52, S453–S470 (2011).
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous