Flat latitudinal diversity gradient caused by the Permian-Triassic mass extinction - PubMed
- ️Wed Jan 01 2020
Flat latitudinal diversity gradient caused by the Permian-Triassic mass extinction
Haijun Song et al. Proc Natl Acad Sci U S A. 2020.
Erratum in
-
[No authors listed] [No authors listed] Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20334. doi: 10.1073/pnas.2015344117. Epub 2020 Aug 10. Proc Natl Acad Sci U S A. 2020. PMID: 32778578 Free PMC article. No abstract available.
Abstract
The latitudinal diversity gradient (LDG) is recognized as one of the most pervasive, global patterns of present-day biodiversity. However, the controlling mechanisms have proved difficult to identify because many potential drivers covary in space. The geological record presents a unique opportunity for understanding the mechanisms which drive the LDG by providing a direct window to deep-time biogeographic dynamics. Here we used a comprehensive database containing 52,318 occurrences of marine fossils to show that the shape of the LDG changed greatly during the Permian-Triassic mass extinction from showing a significant tropical peak to a flattened LDG. The flat LDG lasted for the entire Early Triassic (∼5 My) before reverting to a modern-like shape in the Middle Triassic. The environmental extremes that prevailed globally, especially the dramatic warming, likely induced selective extinction in low latitudes and accumulation of diversity in high latitudes through origination and poleward migration, which combined together account for the flat LDG of the Early Triassic.
Keywords: biodiversity; biogeography; end-Permian mass extinction; global warming; ocean anoxia.
Conflict of interest statement
The authors declare no competing interest.
Figures

LDGs for late Permian and Triassic intervals. (A) Subsampled diversity using a quota of 380 occurrences for each time interval. Vertical bar presents the SD. (B) SQS diversity with a quorum level of 0.5. Dashed line represents the discontinuous case.

Rarefied genus-level diversity trends related to latitude from the late Permian to the end of the Triassic. Data are standardized by repeatedly subsampling from a randomly generated set until reaching a quota of 136 occurrences in each time bin at each latitudinal interval (
SI Appendix, Table S3). Diversities are drawn as a contour map by using Origin Pro-2017 software. Ch, Changhsingian; Gr, Griesbachian; Di, Dienerian; Sm, Smithian; Sp, Spathian; An, Anisian; La, Ladinian; Ca, Carnian; No, Norian; Rh, Rhaetian.

Extinction and extirpation magnitudes in the Changhsingian and early Griesbachian interval and origination and invasion magnitudes in the late Griesbachian–Smithian interval. (A) The combined rates of extinction–extirpation and origination–invasion. (B) Extinction and extirpation rates in the Changhsingian and early Griesbachian interval. (C) Origination and invasion rates in the late Griesbachian-Smithian interval. Vertical bars represent SEs.

Biotic and environmental changes throughout the late Permian to the Middle Triassic. (A) SQS diversities across latitudinal zones. (B) Genus richness and proportion of nekton (23). (C) The number of sites yielding metazoan reefs (50). (D) Sea-surface temperature (SST), ocean redox, and continental weathering. SST values are derived from conodont oxygen isotope data (
SI Appendix, Table S6and
Dataset S2). Redox states of seawater are from conodont Th/U ratios (20). Riverine-to-mantle Sr flux ratios (FR/FM) calculated from conodont Sr isotopes reflect continental weathering change (43).
Comment in
-
A deep-time perspective on the latitudinal diversity gradient.
Mannion PD. Mannion PD. Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17479-17481. doi: 10.1073/pnas.2011997117. Epub 2020 Jul 15. Proc Natl Acad Sci U S A. 2020. PMID: 32669439 Free PMC article. No abstract available.
Similar articles
-
Allen BJ, Wignall PB, Hill DJ, Saupe EE, Dunhill AM. Allen BJ, et al. Proc Biol Sci. 2020 Jun 24;287(1929):20201125. doi: 10.1098/rspb.2020.1125. Epub 2020 Jun 17. Proc Biol Sci. 2020. PMID: 32546099 Free PMC article.
-
Fröbisch J. Fröbisch J. PLoS One. 2008;3(11):e3733. doi: 10.1371/journal.pone.0003733. Epub 2008 Nov 17. PLoS One. 2008. PMID: 19011684 Free PMC article.
-
Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution.
Romano C, Koot MB, Kogan I, Brayard A, Minikh AV, Brinkmann W, Bucher H, Kriwet J. Romano C, et al. Biol Rev Camb Philos Soc. 2016 Feb;91(1):106-47. doi: 10.1111/brv.12161. Epub 2014 Nov 27. Biol Rev Camb Philos Soc. 2016. PMID: 25431138 Review.
-
Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient.
S Meseguer A, Condamine FL. S Meseguer A, et al. Evolution. 2020 Sep;74(9):1966-1987. doi: 10.1111/evo.13967. Epub 2020 Apr 18. Evolution. 2020. PMID: 32246727
-
Jablonski D, Huang S, Roy K, Valentine JW. Jablonski D, et al. Am Nat. 2017 Jan;189(1):1-12. doi: 10.1086/689739. Epub 2016 Dec 2. Am Nat. 2017. PMID: 28035884 Review.
Cited by
-
Why the Early Paleozoic was intrinsically prone to marine extinction.
Pohl A, Stockey RG, Dai X, Yohler R, Le Hir G, Hülse D, Brayard A, Finnegan S, Ridgwell A. Pohl A, et al. Sci Adv. 2023 Sep;9(35):eadg7679. doi: 10.1126/sciadv.adg7679. Epub 2023 Aug 30. Sci Adv. 2023. PMID: 37647393 Free PMC article.
-
DeepDive: estimating global biodiversity patterns through time using deep learning.
Cooper RB, Flannery-Sutherland JT, Silvestro D. Cooper RB, et al. Nat Commun. 2024 May 17;15(1):4199. doi: 10.1038/s41467-024-48434-7. Nat Commun. 2024. PMID: 38760390 Free PMC article.
-
Global warming is causing a more pronounced dip in marine species richness around the equator.
Chaudhary C, Richardson AJ, Schoeman DS, Costello MJ. Chaudhary C, et al. Proc Natl Acad Sci U S A. 2021 Apr 13;118(15):e2015094118. doi: 10.1073/pnas.2015094118. Proc Natl Acad Sci U S A. 2021. PMID: 33876750 Free PMC article.
-
Kocsis ÁT, Reddin CJ, Scotese CR, Valdes PJ, Kiessling W. Kocsis ÁT, et al. Proc Biol Sci. 2021 Aug 25;288(1957):20211342. doi: 10.1098/rspb.2021.1342. Epub 2021 Aug 18. Proc Biol Sci. 2021. PMID: 34403638 Free PMC article.
-
Impact of global climate cooling on Ordovician marine biodiversity.
Ontiveros DE, Beaugrand G, Lefebvre B, Marcilly CM, Servais T, Pohl A. Ontiveros DE, et al. Nat Commun. 2023 Oct 10;14(1):6098. doi: 10.1038/s41467-023-41685-w. Nat Commun. 2023. PMID: 37816739 Free PMC article.
References
-
- Pianka E. R., Latitudinal gradients in species diversity: A review of concepts. Am. Nat. 100, 33–46 (1966).
-
- Hillebrand H., On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004). - PubMed
-
- Willig M. R., Kaufman D. M., Stevens R., Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).
Publication types
LinkOut - more resources
Full Text Sources