Combining high throughput and high quality for cryo-electron microscopy data collection - PubMed
- ️Wed Jan 01 2020
Review
Combining high throughput and high quality for cryo-electron microscopy data collection
Felix Weis et al. Acta Crystallogr D Struct Biol. 2020.
Abstract
Cryo-electron microscopy (cryo-EM) can be used to elucidate the 3D structure of macromolecular complexes. Driven by technological breakthroughs in electron-microscope and electron-detector development, coupled with improved image-processing procedures, it is now possible to reach high resolution both in single-particle analysis and in cryo-electron tomography and subtomogram-averaging approaches. As a consequence, the way in which cryo-EM data are collected has changed and new challenges have arisen in terms of microscope alignment, aberration correction and imaging parameters. This review describes how high-end data collection is performed at the EMBL Heidelberg cryo-EM platform, presenting recent microscope implementations that allow an increase in throughput while maintaining aberration-free imaging and the optimization of acquisition parameters to collect high-resolution data.
Keywords: coma-free imaging; cryo-electron microscopy; fringe-free imaging; high-end data collection.
open access.
Figures

Fringe-free illumination. (a, b) Image of the beam without (a) and with (b) fringe-free illumination. The beam diameter is 460 nm and the images were recorded at spot 9 over a 20 s exposure with a pixel size of 1.34 Å. (c, d) Acquisition scheme without (c) and with (d) fringe-free illumination. The sample is embedded in a thin layer of ice over a holey carbon film with 2 µm diameter holes. The blue squares represent the imaged area in the context of a 1.04 Å pixel. Without fringe-free illumination (c) the beam size, depicted by an orange circle, needs to be ∼1 µm in diameter in order to avoid seeing fringes within the imaged area, limiting the number of acquisitions to five within the hole. In the case of fringe-free illumination (d), a beam size of 600 nm is enough to cover the camera, allowing up to ten acquisitions.
Similar articles
-
Subtomogram averaging from cryo-electron tomograms.
Leigh KE, Navarro PP, Scaramuzza S, Chen W, Zhang Y, Castaño-Díez D, Kudryashev M. Leigh KE, et al. Methods Cell Biol. 2019;152:217-259. doi: 10.1016/bs.mcb.2019.04.003. Epub 2019 May 15. Methods Cell Biol. 2019. PMID: 31326022 Review.
-
Cryo-electron Tomography Remote Data Collection and Subtomogram Averaging.
Sheng Y, Morris K, Radecke J, Zhang P. Sheng Y, et al. J Vis Exp. 2022 Jul 12;(185):10.3791/63923. doi: 10.3791/63923. J Vis Exp. 2022. PMID: 35913165 Free PMC article.
-
Cryo-Electron Tomography and Subtomogram Averaging.
Wan W, Briggs JA. Wan W, et al. Methods Enzymol. 2016;579:329-67. doi: 10.1016/bs.mie.2016.04.014. Epub 2016 Jun 22. Methods Enzymol. 2016. PMID: 27572733 Review.
-
Using Tomoauto: A Protocol for High-throughput Automated Cryo-electron Tomography.
Morado DR, Hu B, Liu J. Morado DR, et al. J Vis Exp. 2016 Jan 30;(107):e53608. doi: 10.3791/53608. J Vis Exp. 2016. PMID: 26863591 Free PMC article.
-
In Situ Studies of Mitochondrial Translation by Cryo-Electron Tomography.
Englmeier R, Förster F. Englmeier R, et al. Methods Mol Biol. 2021;2192:243-268. doi: 10.1007/978-1-0716-0834-0_18. Methods Mol Biol. 2021. PMID: 33230778
Cited by
-
Bringing Structure to Cell Biology with Cryo-Electron Tomography.
Young LN, Villa E. Young LN, et al. Annu Rev Biophys. 2023 May 9;52:573-595. doi: 10.1146/annurev-biophys-111622-091327. Annu Rev Biophys. 2023. PMID: 37159298 Free PMC article. Review.
-
Square condenser apertures for square cameras in low-dose transmission electron microscopy.
Brown HG, Smith D, Wardle BC, Hanssen E. Brown HG, et al. Nat Methods. 2024 Apr;21(4):566-568. doi: 10.1038/s41592-024-02206-9. Epub 2024 Mar 8. Nat Methods. 2024. PMID: 38459386
-
Convolutional networks for supervised mining of molecular patterns within cellular context.
de Teresa-Trueba I, Goetz SK, Mattausch A, Stojanovska F, Zimmerli CE, Toro-Nahuelpan M, Cheng DWC, Tollervey F, Pape C, Beck M, Diz-Muñoz A, Kreshuk A, Mahamid J, Zaugg JB. de Teresa-Trueba I, et al. Nat Methods. 2023 Feb;20(2):284-294. doi: 10.1038/s41592-022-01746-2. Epub 2023 Jan 23. Nat Methods. 2023. PMID: 36690741 Free PMC article.
-
Parkhurst JM, Dumoux M, Basham M, Clare D, Siebert CA, Varslot T, Kirkland A, Naismith JH, Evans G. Parkhurst JM, et al. Open Biol. 2021 Oct;11(10):210160. doi: 10.1098/rsob.210160. Epub 2021 Oct 27. Open Biol. 2021. PMID: 34699732 Free PMC article.
-
Rapid structural analysis of bacterial ribosomes in situ.
Powell BM, Brant TS, Davis JH, Mosalaganti S. Powell BM, et al. bioRxiv [Preprint]. 2024 Mar 26:2024.03.22.586148. doi: 10.1101/2024.03.22.586148. bioRxiv. 2024. PMID: 38585831 Free PMC article. Updated. Preprint.
References
-
- Christenson, K. K. & Eades, J. A. (1986). Ultramicroscopy, 19, 191–194.
-
- Eades, A. (2006). Ultramicroscopy, 106, 432–438. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials