Enzymatic Antioxidant Signatures in Hyperthermophilic Archaea - PubMed
- ️Wed Jan 01 2020
Review
Enzymatic Antioxidant Signatures in Hyperthermophilic Archaea
Emilia Pedone et al. Antioxidants (Basel). 2020.
Abstract
To fight reactive oxygen species (ROS) produced by both the metabolism and strongly oxidative habitats, hyperthermophilic archaea are equipped with an array of antioxidant enzymes whose role is to protect the biological macromolecules from oxidative damage. The most common ROS, such as superoxide radical (O2-.) and hydrogen peroxide (H2O2), are scavenged by superoxide dismutase, peroxiredoxins, and catalase. These enzymes, together with thioredoxin, protein disulfide oxidoreductase, and thioredoxin reductase, which are involved in redox homeostasis, represent the core of the antioxidant system. In this review, we offer a panorama of progression of knowledge on the antioxidative system in aerobic or microaerobic (hyper)thermophilic archaea and possible industrial applications of these enzymes.
Keywords: antioxidant enzymes; archaea; hyperthermophiles; oxidative stress; reactive oxygen species.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d939/7465337/792d2d98b073/antioxidants-09-00703-g001.gif)
Phylogenetic tree of life. The red lines represent the hyperthermophilic aerobic archaea. In capitals, in bold italics, and in italics are phylum, family, and genus of the Archaea, respectively.
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d939/7465337/85f137fe4240/antioxidants-09-00703-g002.gif)
SOD sequence alignment by Clustal Omega. Thermoplasma acidophilum, Thermoplasma volcanium, Acidianus amibivalens, Saccharolobus solfataricus, Sulfolobus acidocaldarius, Aeropyrum pernix, Pyrobaculum aerophilum, and Pyrobaculum calidifontis.
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d939/7465337/4537ff132b1d/antioxidants-09-00703-g003.gif)
General thiol redox pathway to recycle Prxs.
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d939/7465337/84b593172c33/antioxidants-09-00703-g004.gif)
Sequence alignment of Sulerythrin by Clustal Omega among S. tokodai, S. solfataricus, and S. acidocaldarius. Conserved residues that are related to di-iron center binding are in bold.
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d939/7465337/c9e21c549e4f/antioxidants-09-00703-g005.gif)
Schematic response of the enzymes involved in oxidative stress in hyperthermophilic aerobic archaea.
Similar articles
-
Huihui Z, Xin L, Yupeng G, Mabo L, Yue W, Meijun A, Yuehui Z, Guanjun L, Nan X, Guangyu S. Huihui Z, et al. Ecotoxicol Environ Saf. 2020 Apr 15;193:110259. doi: 10.1016/j.ecoenv.2020.110259. Epub 2020 Feb 22. Ecotoxicol Environ Saf. 2020. PMID: 32097787
-
Orchestrating the antioxidant defenses in the epididymis.
O'Flaherty C. O'Flaherty C. Andrology. 2019 Sep;7(5):662-668. doi: 10.1111/andr.12630. Epub 2019 May 1. Andrology. 2019. PMID: 31044545 Review.
-
Neira G, Vergara E, Cortez D, Holmes DS. Neira G, et al. Antioxidants (Basel). 2021 Dec 28;11(1):59. doi: 10.3390/antiox11010059. Antioxidants (Basel). 2021. PMID: 35052563 Free PMC article.
-
Pycnogenol enhances endothelial cell antioxidant defenses.
Wei ZH, Peng QL, Lau BH. Wei ZH, et al. Redox Rep. 1997 Aug;3(4):219-24. doi: 10.1080/13510002.1997.11747113. Redox Rep. 1997. PMID: 27415023
-
Oxidative Stress and the Aging Brain: From Theory to Prevention.
Gemma C, Vila J, Bachstetter A, Bickford PC. Gemma C, et al. In: Riddle DR, editor. Brain Aging: Models, Methods, and Mechanisms. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 15. In: Riddle DR, editor. Brain Aging: Models, Methods, and Mechanisms. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 15. PMID: 21204345 Free Books & Documents. Review.
Cited by
-
Aragaw TA, Bogale FM, Gessesse A. Aragaw TA, et al. Front Physiol. 2022 Jun 20;13:908370. doi: 10.3389/fphys.2022.908370. eCollection 2022. Front Physiol. 2022. PMID: 35795652 Free PMC article. Review.
-
Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications.
Rani A, Saini KC, Bast F, Mehariya S, Bhatia SK, Lavecchia R, Zuorro A. Rani A, et al. Molecules. 2021 Feb 20;26(4):1142. doi: 10.3390/molecules26041142. Molecules. 2021. PMID: 33672774 Free PMC article. Review.
-
Qu L, Li M, Gong F, He L, Li M, Zhang C, Yin K, Xie W. Qu L, et al. Microbiol Spectr. 2024 Jan 11;12(1):e0203323. doi: 10.1128/spectrum.02033-23. Epub 2023 Dec 4. Microbiol Spectr. 2024. PMID: 38047693 Free PMC article.
-
Nasreldin N, El-Shoukary RD, Abdel-Raheem GSE, Gharib HS, Zigo F, Farkašová Z, Rehan IF, Senosy W. Nasreldin N, et al. Front Vet Sci. 2023 Oct 20;10:1221830. doi: 10.3389/fvets.2023.1221830. eCollection 2023. Front Vet Sci. 2023. PMID: 37929284 Free PMC article.
-
Santhosh PB, Genova J. Santhosh PB, et al. ACS Omega. 2022 Dec 28;8(1):1-9. doi: 10.1021/acsomega.2c06034. eCollection 2023 Jan 10. ACS Omega. 2022. PMID: 36643444 Free PMC article. Review.
References
Publication types
Grants and funding
- MIUR 2017-JTNK78.006/"FLAshMoB: FunctionalAmyloid Chimera for Marine Biosensing"; GoodbyWaste: ObtainGOOD products - exploit BY-products - reduce WASTE, MIUR 2017-JTNK78.006, Italy
- FFABR 2017/Fondo per il Finanziamento delleAttivita' Base di Ricerca (FFABR 2017) Ministero dell'Università e della Ricerca (MIUR) Italy
LinkOut - more resources
Full Text Sources