NLRP12 in innate immunity and inflammation - PubMed
Review
NLRP12 in innate immunity and inflammation
Shraddha Tuladhar et al. Mol Aspects Med. 2020 Dec.
Abstract
Nucleotide-binding leucine-rich repeat-containing proteins, or NOD-like receptors (NLRs), are intracellular innate immune sensors that can regulate several signaling pathways, including MyD88- and TRIF-dependent pathways. In addition to these regulatory roles, some NLRs can assemble into multimeric protein complexes known as inflammasomes. NLRP12 is a member of the NLR family that contains an N-terminal pyrin domain, a central nucleotide-binding domain, and a C-terminal leucine-rich repeat. It has been shown to play a role in forming an inflammasome in response to specific infections, and it can also function as a regulator of inflammatory signaling. During Yersinia pestis or Plasmodium chabaudi infection, NLRP12 induces the release of the inflammasome-dependent cytokines IL-1β and IL-18. These NLRP12-dependent cytokines confer protection against severe infections caused by these pathogens. Conversely, during infection with Salmonella enterica serovar Typhimurium, vesicular stomatitis virus, Klebsiella pneumoniae, or Mycobacterium tuberculosis, and in colonic tumorigenesis, NLRP12 acts as a negative regulator of the NFκB and MAPK signaling pathways. NLRP12 also negatively regulates canonical and non-canonical signaling in T cells and causes exacerbated autoimmune diseases. Furthermore, NLRP12 acts as a central component in maintaining intestinal inflammation and gut homeostasis. Therefore, the ability of NLRP12 to function as an inflammasome or as a negative regulator is context-dependent. In this review, we provide an overview of the NLR family members and summarize recent insights into the roles of NLRP12 as an inflammasome and as a negative regulator.
Keywords: ASC; Cancer; Caspase-1; Cell death; Gasdermin; IL-18; IL-1β; Infection; Inflammasome; Inflammation; NLRP12; Negative regulator; Pyrin domain; Pyroptosis.
Copyright © 2020 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Conflicts of Interest
The authors have no conflicts of interest to disclose.
Figures

Schematic representation of NLR family members, including members of the NLRC and NLRP groups. The arrow indicates that NLRP2 to NLRP9 and NLRP11 to NLRP14 share the same domains. AD, activation domain; BIR, baculovirus inhibitor of apoptosis protein repeat; CARD, caspase recruitment domain; CIITA, class II major histocompatibility complex transactivator; FIIND, function to find domain; LRR, leucine-rich repeats; NACHT domain, NAIP, CIITA, HET-E, and TP1-containing domain; NBD, nucleotide-binding domain; PYD, pyrin domain.

NLRP12 acts in innate immune signaling in a pathogen-specific manner. (A) NLRP12 negatively regulates inflammatory signaling by suppressing canonical and non-canonical NFκB signaling and the MAPK/ERK signaling pathway in bone marrow-derived macrophages (BMDMs)002E (B) NLRP12 associates with TRIM25 to reduce polyubiquitination and inhibit the RIG-I-mediated IFN response during VSV infection. (C) The NLRP12 inflammasome can drive caspase-1 activation and IL-1β and IL-18 release in BMDMs during infection with Yersinia pestis and Plasmodium chabaudi.
Similar articles
-
The NLRP12 inflammasome recognizes Yersinia pestis.
Vladimer GI, Weng D, Paquette SW, Vanaja SK, Rathinam VA, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q, Reed G, Mecsas JC, Iwakura Y, Bertin J, Goguen JD, Fitzgerald KA, Lien E. Vladimer GI, et al. Immunity. 2012 Jul 27;37(1):96-107. doi: 10.1016/j.immuni.2012.07.006. Immunity. 2012. PMID: 22840842 Free PMC article.
-
NLRP12 interacts with NLRP3 to block the activation of the human NLRP3 inflammasome.
Coombs JR, Zamoshnikova A, Holley CL, Maddugoda MP, Teo DET, Chauvin C, Poulin LF, Vitak N, Ross CM, Mellacheruvu M, Coll RC, Heinz LX, Burgener SS, Emming S, Chamaillard M, Boucher D, Schroder K. Coombs JR, et al. Sci Signal. 2024 Jan 23;17(820):eabg8145. doi: 10.1126/scisignal.abg8145. Epub 2024 Jan 23. Sci Signal. 2024. PMID: 38261657
-
The multifaceted nature of NLRP12.
Tuncer S, Fiorillo MT, Sorrentino R. Tuncer S, et al. J Leukoc Biol. 2014 Dec;96(6):991-1000. doi: 10.1189/jlb.3RU0514-265RR. Epub 2014 Sep 23. J Leukoc Biol. 2014. PMID: 25249449
-
Focus on negatively regulated NLRs in inflammation and cancer.
Wang J, He W, Li C, Ma Y, Liu M, Ye J, Sun L, Su J, Zhou L. Wang J, et al. Int Immunopharmacol. 2024 Jul 30;136:112347. doi: 10.1016/j.intimp.2024.112347. Epub 2024 May 30. Int Immunopharmacol. 2024. PMID: 38820966 Review.
-
Platnich JM, Muruve DA. Platnich JM, et al. Arch Biochem Biophys. 2019 Jul 30;670:4-14. doi: 10.1016/j.abb.2019.02.008. Epub 2019 Feb 14. Arch Biochem Biophys. 2019. PMID: 30772258 Review.
Cited by
-
Never-homozygous genetic variants in healthy populations are potential recessive disease candidates.
Schmenger T, Diwan GD, Singh G, Apic G, Russell RB. Schmenger T, et al. NPJ Genom Med. 2022 Sep 8;7(1):54. doi: 10.1038/s41525-022-00322-z. NPJ Genom Med. 2022. PMID: 36075934 Free PMC article.
-
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases.
Chen H, Zhang J, He Y, Lv Z, Liang Z, Chen J, Li P, Liu J, Yang H, Tao A, Liu X. Chen H, et al. Toxins (Basel). 2022 Jul 6;14(7):464. doi: 10.3390/toxins14070464. Toxins (Basel). 2022. PMID: 35878202 Free PMC article. Review.
-
Whole transcriptome expression profiles in kidney samples from rats with hyperuricaemic nephropathy.
Li N, Amatjan M, He P, Wu M, Yan H, Shao X. Li N, et al. PLoS One. 2022 Dec 19;17(12):e0276591. doi: 10.1371/journal.pone.0276591. eCollection 2022. PLoS One. 2022. PMID: 36534664 Free PMC article.
-
Xu XW, Zheng W, Meng Z, Xu W, Liu Y, Chen S. Xu XW, et al. Sci Data. 2022 Jun 29;9(1):374. doi: 10.1038/s41597-022-01458-4. Sci Data. 2022. PMID: 35768602 Free PMC article.
-
NOD-like Receptors-Emerging Links to Obesity and Associated Morbidities.
Bauer S, Hezinger L, Rexhepi F, Ramanathan S, Kufer TA. Bauer S, et al. Int J Mol Sci. 2023 May 11;24(10):8595. doi: 10.3390/ijms24108595. Int J Mol Sci. 2023. PMID: 37239938 Free PMC article. Review.
References
-
- Aikawa C, Nakajima S, Karimine M, Nozawa T, Minowa-Nozawa A, Toh H, Yamada S, Nakagawa I, 2018. NLRX1 Negatively Regulates Group A Streptococcus Invasion and Autophagy Induction by Interacting With the Beclin 1-UVRAG Complex. Front. Cell. Infect. Microbiol. 8, 403. 10.3389/fcimb.2018.00403 - DOI - PMC - PubMed
-
- Allen IC, Moore CB, Schneider M, Lei Y, Davis BK, Scull MA, Gris D, Roney KE, Zimmermann AG, Bowzard JB, Ranjan P, Monroe KM, Pickles RJ, Sambhara S, Ting JPY, 2011. NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-κB signaling pathways. Immunity 34, 854–865. 10.1016/j.immuni.2011.03.026 - DOI - PMC - PubMed
-
- Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford R-MT, Davis BK, Uronis JM, Herfarth HH, Jobin C, Rogers AB, Ting JP-Y, 2012. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity 36, 742–754. 10.1016/j.immuni.2012.03.012 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous