Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy - PubMed
- ️Wed Jan 01 2020
Review
Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy
Lanfeng Dong et al. Int J Mol Sci. 2020.
Abstract
Mitochondria are essential cellular organelles, controlling multiple signalling pathways critical for cell survival and cell death. Increasing evidence suggests that mitochondrial metabolism and functions are indispensable in tumorigenesis and cancer progression, rendering mitochondria and mitochondrial functions as plausible targets for anti-cancer therapeutics. In this review, we summarised the major strategies of selective targeting of mitochondria and their functions to combat cancer, including targeting mitochondrial metabolism, the electron transport chain and tricarboxylic acid cycle, mitochondrial redox signalling pathways, and ROS homeostasis. We highlight that delivering anti-cancer drugs into mitochondria exhibits enormous potential for future cancer therapeutic strategies, with a great advantage of potentially overcoming drug resistance. Mitocans, exemplified by mitochondrially targeted vitamin E succinate and tamoxifen (MitoTam), selectively target cancer cell mitochondria and efficiently kill multiple types of cancer cells by disrupting mitochondrial function, with MitoTam currently undergoing a clinical trial.
Keywords: anti-cancer strategy; drug delivery; mitocans; mitochondrial targeting.
Conflict of interest statement
One of the authors (Jiri Neuzil) is involved in the MitoTam-01 clinical trial (EudraCT 2017-004441-25) and is a co-CEO of MitoTax s.r.o. that is a co-owner of the MitoTam intellectual property.
Figures

Mitochondrial transfer from host cells leads to tumorigenesis recovery of mtDNA-depleted cancer cells. (A) mtDNA deficient ρ0 cancer cells do not form tumours. mtDNA acquisition from host cells leads to recovery of tumorigenic capacity of the cells. (B) In mtDNA deficient ρ0 cancer cells, signalling between mitochondria and nucleus is dampened. Reduced levels of the transcription coactivator PGC1α/β leads to the low transcriptional activity of nuclear respiratory factor-1 (NRF1), resulting in the low level of nuclear-encoded proteins imported into the mitochondria and mitochondrial dysfunction. (C) Mitochondrial transfer from host cells leads to increased PGC1α/β levels with an increased NRF1 transcriptional activity. This allows appropriate levels of nuclear-encoded mitochondrial proteins to be imported into mitochondria and to recover mitochondrial function.

Positively charged triphenylphosphonium (TPP) anchors compound-X in the mitochondrial inner membrane (MIM) due to negative potential at the matrix face of the MIM.

Schematic illustration of the molecular targets of individual classes of mitocans. The classes of mitocans comprise the following, as enumerated from the outside of the mitochondria towards the matrix. Class 1: hexokinase inhibitors; Class 2: BH3 mimetics and related agents that impair the function of the anti-apoptotic Bcl-2 family proteins; Class 3: thiol redox inhibitors; Class 4: agents targeting VDAC and ANT; Class 5: compounds targeting the mitochondrial electron transport chain; Class 6: hydrophobic cations targeting the MIM; Class 7: compounds that affect the TCA; and Class 8: agents that interfere with mtDNA. Class 9 (not shown) includes agents acting on mitochondria, whose molecular target has not been thus far described [10].
Similar articles
-
Anticancer drugs targeting the mitochondrial electron transport chain.
Rohlena J, Dong LF, Ralph SJ, Neuzil J. Rohlena J, et al. Antioxid Redox Signal. 2011 Dec 15;15(12):2951-74. doi: 10.1089/ars.2011.3990. Epub 2011 Sep 1. Antioxid Redox Signal. 2011. PMID: 21777145 Review.
-
Ralph SJ, Low P, Dong L, Lawen A, Neuzil J. Ralph SJ, et al. Recent Pat Anticancer Drug Discov. 2006 Nov;1(3):327-46. doi: 10.2174/157489206778776952. Recent Pat Anticancer Drug Discov. 2006. PMID: 18221044 Review.
-
Novel Mitochondria-targeted Drugs for Cancer Therapy.
Fialova JL, Raudenska M, Jakubek M, Kejik Z, Martasek P, Babula P, Matkowski A, Filipensky P, Masarik M. Fialova JL, et al. Mini Rev Med Chem. 2021;21(7):816-832. doi: 10.2174/1389557520666201118153242. Mini Rev Med Chem. 2021. PMID: 33213355 Review.
-
Polyphenols as mitochondria-targeted anticancer drugs.
Gorlach S, Fichna J, Lewandowska U. Gorlach S, et al. Cancer Lett. 2015 Oct 1;366(2):141-9. doi: 10.1016/j.canlet.2015.07.004. Epub 2015 Jul 13. Cancer Lett. 2015. PMID: 26185003 Review.
-
Rohlenova K, Sachaphibulkij K, Stursa J, Bezawork-Geleta A, Blecha J, Endaya B, Werner L, Cerny J, Zobalova R, Goodwin J, Spacek T, Alizadeh Pesdar E, Yan B, Nguyen MN, Vondrusova M, Sobol M, Jezek P, Hozak P, Truksa J, Rohlena J, Dong LF, Neuzil J. Rohlenova K, et al. Antioxid Redox Signal. 2017 Jan 10;26(2):84-103. doi: 10.1089/ars.2016.6677. Epub 2016 Aug 22. Antioxid Redox Signal. 2017. PMID: 27392540 Free PMC article.
Cited by
-
A Cationic Amphiphilic AIE Polymer for Mitochondrial Targeting and Imaging.
Zhou J, Wang H, Wang W, Ma Z, Chi Z, Liu S. Zhou J, et al. Pharmaceutics. 2022 Dec 28;15(1):103. doi: 10.3390/pharmaceutics15010103. Pharmaceutics. 2022. PMID: 36678732 Free PMC article.
-
Castelôa M, Moreira-Pinto B, Benfeito S, Borges F, Fonseca BM, Rebelo I. Castelôa M, et al. Biomedicines. 2022 Mar 29;10(4):800. doi: 10.3390/biomedicines10040800. Biomedicines. 2022. PMID: 35453550 Free PMC article.
-
The Role of HSP90 and TRAP1 Targets on Treatment in Hepatocellular Carcinoma.
Praveen Kumar PK, Sundar H, Balakrishnan K, Subramaniam S, Ramachandran H, Kevin M, Michael Gromiha M. Praveen Kumar PK, et al. Mol Biotechnol. 2024 Apr 29. doi: 10.1007/s12033-024-01151-4. Online ahead of print. Mol Biotechnol. 2024. PMID: 38684604 Review.
-
Arbon D, Ženíšková K, Šubrtová K, Mach J, Štursa J, Machado M, Zahedifard F, Leštinová T, Hierro-Yap C, Neuzil J, Volf P, Ganter M, Zoltner M, Zíková A, Werner L, Sutak R. Arbon D, et al. Antimicrob Agents Chemother. 2022 Aug 16;66(8):e0072722. doi: 10.1128/aac.00727-22. Epub 2022 Jul 20. Antimicrob Agents Chemother. 2022. PMID: 35856666 Free PMC article.
-
The bioenergetic landscape of cancer.
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. Zunica ERM, et al. Mol Metab. 2024 Aug;86:101966. doi: 10.1016/j.molmet.2024.101966. Epub 2024 Jun 12. Mol Metab. 2024. PMID: 38876266 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources