7X multiplexed, optofluidic detection of nucleic acids for antibiotic-resistance bacterial screening - PubMed
- ️Wed Jan 01 2020
7X multiplexed, optofluidic detection of nucleic acids for antibiotic-resistance bacterial screening
G G Meena et al. Opt Express. 2020.
Abstract
Rapid and accurate diagnosis of bacterial infections resistant to multiple antibiotics requires development of new bio-sensors for differentiated detection of multiple targets. This work demonstrates 7x multiplexed detection for antibiotic-resistance bacterial screening on an optofluidic platform. We utilize spectrally multiplexed multi-spot excitation for simultaneous detection of nucleic acid strands corresponding to bacterial targets and resistance genes. This is enabled by multi-mode interference (MMI) waveguides integrated in an optofluidic device. We employ a combinatorial three-color labeling scheme for the nucleic acid assays to scale up their multiplexing capability to seven different nucleic acids, representing three species and four resistance genes.
Conflict of interest statement
A.R.H and H.S have financial interest in Fluxus Inc. which is developing optofluidic devices.
Figures

(a) Schematic view of experimental setup and optofluidic chip. (b) Top down optical microscope image of a chip (Scale bar: 200μm) (c) Color coded fluorescent dye image of the patterns generated by the MMI waveguide in the LC waveguide.

(a) Schematic image of magnetic-bead based assays with targets combinatorieally labeled with dark red, red and green colors. (b) Color codes used to label the seven different antibiotic resistance gene/species targets [DR-Dark Red, R-Red, G-Green].

Single-target experiments. (a) E.Coli detection: (i) Detected fluorescence signals when beads with E. coli) targets are flowed through the chip and excited by the MMI waveguide; colored (black) symbols on each event represent correctly (incorrectly) identified targets. The dashed line indicates the threshold for particle detection. (ii) Zoomed-in signal from a single bead. (iii) Bar histogram map of S(t)C of a correctly identified E. coli signal. (b) and (c) same analysis for IMP and E. aerogenes targets.

(a) Histogram of S(t)C values of all the detected single colored (DR) E. coli-carrying beads. Most of the signals dominate only in the dark red channel ((b) and (c) are from two -color (DR-R) IMP targets and three-color (DR-R-G) E. aerogenes targets).

Fluorescence signals from all seven bacterial targets are flowed simultaneously through the chip, excited by all three lasers and identified; dashed line: threshold for target detection.
Similar articles
-
Rapid Polymyxin NP test for the detection of polymyxin resistance mediated by the mcr-1/mcr-2 genes.
Poirel L, Larpin Y, Dobias J, Stephan R, Decousser JW, Madec JY, Nordmann P. Poirel L, et al. Diagn Microbiol Infect Dis. 2018 Jan;90(1):7-10. doi: 10.1016/j.diagmicrobio.2017.09.012. Epub 2017 Sep 22. Diagn Microbiol Infect Dis. 2018. PMID: 29146285
-
Characterization of a novel qepA3 variant in Enterobacter aerogenes.
Wang D, Huang X, Chen J, Mou Y, Qi Y. Wang D, et al. J Microbiol Immunol Infect. 2017 Apr;50(2):254-257. doi: 10.1016/j.jmii.2016.01.001. Epub 2016 Feb 10. J Microbiol Immunol Infect. 2017. PMID: 26947590
-
Li G, Zhang Y, Bi D, Shen P, Ai F, Liu H, Tian Y, Ma Y, Wang B, Rajakumar K, Ou HY, Jiang X. Li G, et al. Antimicrob Agents Chemother. 2015 Jan;59(1):338-43. doi: 10.1128/AAC.03061-14. Epub 2014 Nov 3. Antimicrob Agents Chemother. 2015. PMID: 25367902 Free PMC article.
-
Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics.
MacNair CR, Stokes JM, Carfrae LA, Fiebig-Comyn AA, Coombes BK, Mulvey MR, Brown ED. MacNair CR, et al. Nat Commun. 2018 Jan 31;9(1):458. doi: 10.1038/s41467-018-02875-z. Nat Commun. 2018. PMID: 29386620 Free PMC article.
-
Ding B, Hu F, Yang Y, Guo Q, Huang J, Wang M. Ding B, et al. J Clin Microbiol. 2015 Mar;53(3):1031-3. doi: 10.1128/JCM.03623-14. Epub 2014 Dec 31. J Clin Microbiol. 2015. PMID: 25552359 Free PMC article.
Cited by
-
Stambaugh A, Parks JW, Stott MA, Meena GG, Hawkins AR, Schmidt H. Stambaugh A, et al. Proc Natl Acad Sci U S A. 2021 May 18;118(20):e2103480118. doi: 10.1073/pnas.2103480118. Proc Natl Acad Sci U S A. 2021. PMID: 33947795 Free PMC article.
-
Comparison of Illumination Methods for Flow-Through Optofluidic Biosensors.
Hamblin M, Wright J, Schmidt H, Hawkins AR. Hamblin M, et al. Micromachines (Basel). 2023 Mar 24;14(4):723. doi: 10.3390/mi14040723. Micromachines (Basel). 2023. PMID: 37420956 Free PMC article.
-
Ultrasensitive detection of SARS-CoV-2 RNA and antigen using single-molecule optofluidic chip.
Meena GG, Stambaugh AM, Ganjalizadeh V, Stott MA, Hawkins AR, Schmidt H. Meena GG, et al. APL Photonics. 2021 Jun;6(6):066101. doi: 10.1063/5.0049735. Epub 2021 Jun 1. APL Photonics. 2021. PMID: 35693725 Free PMC article.
-
Recent advances in integrated solid-state nanopore sensors.
Rahman M, Sampad MJN, Hawkins A, Schmidt H. Rahman M, et al. Lab Chip. 2021 Aug 21;21(16):3030-3052. doi: 10.1039/d1lc00294e. Epub 2021 Jun 17. Lab Chip. 2021. PMID: 34137407 Free PMC article. Review.
-
Performance Comparison of Flow-Through Optofluidic Biosensor Designs.
Wright JG Jr, Amin MN, Schmidt H, Hawkins AR. Wright JG Jr, et al. Biosensors (Basel). 2021 Jul 7;11(7):226. doi: 10.3390/bios11070226. Biosensors (Basel). 2021. PMID: 34356697 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical