Restoration of degraded grasslands, but not invasion by Prosopis juliflora, avoids trade-offs between climate change mitigation and other ecosystem services - PubMed
- ️Wed Jan 01 2020
Restoration of degraded grasslands, but not invasion by Prosopis juliflora, avoids trade-offs between climate change mitigation and other ecosystem services
Purity Rima Mbaabu et al. Sci Rep. 2020.
Abstract
Grassland degradation and the concomitant loss of soil organic carbon is widespread in tropical arid and semi-arid regions of the world. Afforestation of degraded grassland, sometimes by using invasive alien trees, has been put forward as a legitimate climate change mitigation strategy. However, even in cases where tree encroachment of degraded grasslands leads to increased soil organic carbon, it may come at a high cost since the restoration of grassland-characteristic biodiversity and ecosystem services will be blocked. We assessed how invasion by Prosopis juliflora and restoration of degraded grasslands in a semi-arid region in Baringo, Kenya affected soil organic carbon, biodiversity and fodder availability. Thirty years of grassland restoration replenished soil organic carbon to 1 m depth at a rate of 1.4% per year and restored herbaceous biomass to levels of pristine grasslands, while plant biodiversity remained low. Invasion of degraded grasslands by P. juliflora increased soil organic carbon primarily in the upper 30 cm and suppressed herbaceous vegetation. We argue that, in contrast to encroachment by invasive alien trees, restoration of grasslands in tropical semi-arid regions can both serve as a measure for climate change mitigation and help restore key ecosystem services important for pastoralists and agro-pastoralist communities.
Conflict of interest statement
The authors declare no competing interests.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bf5/7686326/eafb3e606c3c/41598_2020_77126_Fig1_HTML.gif)
Soil organic carbon concentration (%SOC) for the five land cover types and four soil depth increments. Error bars indicate standard errors. The arrows represent a hypothetical transition from one land cover state to the next over time.
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bf5/7686326/df3be148e719/41598_2020_77126_Fig2_HTML.gif)
Total soil organic carbon in tonnes per hectare at four soil depth increments from surface to 1 m below ground (A), species richness per plot (225 m2) (B) and dry weight of herbaceous vegetation g m-2 (C), shown for the five land cover types. The error bars indicate standard errors. Land cover types sharing a letter are not significantly different at α = 0.05.
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bf5/7686326/f30ff4234481/41598_2020_77126_Fig3_HTML.gif)
Overview of Baringo lowlands (Njemps Flats) in Kenya, the location of the sampled plots and sample photos for each land cover type. The large map (middle), is displayed on a digital elevation model generated by the Shuttle Radar Topography Mission (SRTM), provided by United States Geological Survey (USGS) available at
https://earthexplorer.usgs.gov/. The two inset maps on the left for Kenya and Africa were generated using GIS data downloaded from World Resources Institute (
www.wri.org) and ESRI (
www.arcgis.com) respectively. The map was designed using ArcMap version 10.2.2.
Similar articles
-
Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands.
Buisson E, Le Stradic S, Silveira FAO, Durigan G, Overbeck GE, Fidelis A, Fernandes GW, Bond WJ, Hermann JM, Mahy G, Alvarado ST, Zaloumis NP, Veldman JW. Buisson E, et al. Biol Rev Camb Philos Soc. 2019 Apr;94(2):590-609. doi: 10.1111/brv.12470. Epub 2018 Sep 24. Biol Rev Camb Philos Soc. 2019. PMID: 30251329 Review.
-
Erdős L, Török P, Veldman JW, Bátori Z, Bede-Fazekas Á, Magnes M, Kröel-Dulay G, Tölgyesi C. Erdős L, et al. Biol Rev Camb Philos Soc. 2022 Dec;97(6):2195-2208. doi: 10.1111/brv.12889. Epub 2022 Aug 9. Biol Rev Camb Philos Soc. 2022. PMID: 35942892 Free PMC article.
-
Wang J, Zhao W, Xu Z, Ding J, Yan Y, Sofia Santos Ferreira C. Wang J, et al. J Environ Manage. 2023 Nov 1;345:118853. doi: 10.1016/j.jenvman.2023.118853. Epub 2023 Sep 4. J Environ Manage. 2023. PMID: 37660423
-
Eschen R, Bekele K, Jumanne Y, Kibet S, Makale F, Mbwambo JR, Megersa B, Mijay M, Moyo F, Munishi L, Mwihomeke M, Nunda W, Nyangito M, Witt A, Schaffner U. Eschen R, et al. CABI Agric Biosci. 2023;4(1):21. doi: 10.1186/s43170-023-00163-5. Epub 2023 Jul 13. CABI Agric Biosci. 2023. PMID: 38800115 Free PMC article.
-
The role of grasslands in food security and climate change.
O'Mara FP. O'Mara FP. Ann Bot. 2012 Nov;110(6):1263-70. doi: 10.1093/aob/mcs209. Epub 2012 Sep 21. Ann Bot. 2012. PMID: 23002270 Free PMC article. Review.
Cited by
-
Odebiri O, Mutanga O, Odindi J, Slotow R, Mafongoya P, Lottering R, Naicker R, Matongera TN, Mngadi M. Odebiri O, et al. Catena (Amst). 2024 Aug;243:108216. doi: 10.1016/j.catena.2024.108216. Catena (Amst). 2024. PMID: 39021895 Free PMC article.
-
Xu L, Li D, Wang D, Ye L, Nie Y, Fang H, Xue W, Bai C, Van Ranst E. Xu L, et al. Front Plant Sci. 2022 Sep 29;13:985864. doi: 10.3389/fpls.2022.985864. eCollection 2022. Front Plant Sci. 2022. PMID: 36247641 Free PMC article.
-
Grassland degradation affected vegetation carbon density but not soil carbon density.
Zhou C, Xia H, Yang T, Zhang Z, Zheng G. Zhou C, et al. BMC Plant Biol. 2024 Jul 29;24(1):719. doi: 10.1186/s12870-024-05409-6. BMC Plant Biol. 2024. PMID: 39069617 Free PMC article.
-
Chiuya T, Fèvre EM, Okumu NO, Abdi AM, Junglen S, Borgemeister C. Chiuya T, et al. Pathogens. 2024 Jul 24;13(8):613. doi: 10.3390/pathogens13080613. Pathogens. 2024. PMID: 39204214 Free PMC article.
-
Tabe Ojong MP Jr, Alvarez M, Ihli HJ, Becker M, Heckelei T. Tabe Ojong MP Jr, et al. Environ Manage. 2022 May;69(5):861-870. doi: 10.1007/s00267-021-01577-5. Epub 2021 Dec 14. Environ Manage. 2022. PMID: 34907461 Free PMC article.
References
-
- FAO. Soil Organic Carbon: the hidden potential (eds. Liesl, W., Viridiana, A., Rainer, B. & Ronald, V.) ISBN 978–92–5–109681–9 (FAO, 2017).
-
- Doney SC, Lindsay K, Fung I, John J. Natural variability in a stable, 1000-yr global coupled climate-carbon cycle simulation. J. Clim. 2006;19:3033–3054. doi: 10.1175/JCLI3783.1. - DOI
-
- Batjes NH. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996;65:4–21.
-
- Dlamini P, Chivenge P, Manson A, Chaplot V. Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in South Africa. Geoderma. 2014;235–236:372–381. doi: 10.1016/j.geoderma.2014.07.016. - DOI
-
- IUCN. Land Degradation and Climate Change: The multiple benefits of sustainable land management in the drylands. In The twenty-first session of the Conference of the Parties (COP) and the eleventh session of the Conference of the Parties serving as the meeting of the Parties to the Kyoto Protocol (CMP) took place from 30 November to 11 December 2015, in Paris, France, (2015).
Publication types
LinkOut - more resources
Full Text Sources