Functional Biopolymer Particles: Design, Fabrication, and Applications - PubMed
Functional Biopolymer Particles: Design, Fabrication, and Applications
Owen Griffith Jones et al. Compr Rev Food Sci Food Saf. 2010 Jul.
Abstract
Biopolymer nano- and micro-particles, fabricated from either proteins and/or polysaccharides, can be utilized as delivery systems or to modulate the physicochemical and sensory characteristics of food products. This article reviews the principles underlying the design, fabrication, and application of biopolymer particles fabricated from globular proteins, used either alone or in combination with polysaccharides, within the food industry. The properties of biopolymer particles and their impact on the physicochemical and functional properties of foods are described. The molecular characteristics and interactions of the building blocks (proteins and polysaccharides) used to assemble these particles are briefly reviewed. The major structural design principles that can be used to fabricate biopolymer particles from food-grade proteins and polysaccharides are outlined. Finally, some of the potential applications of functional biopolymer particles within foods are highlighted.
© 2010 Institute of Food Technologists®.
Similar articles
-
Davidov-Pardo G, Joye IJ, McClements DJ. Davidov-Pardo G, et al. Adv Protein Chem Struct Biol. 2015;98:293-325. doi: 10.1016/bs.apcsb.2014.11.004. Epub 2015 Mar 3. Adv Protein Chem Struct Biol. 2015. PMID: 25819283 Review.
-
McClements DJ. McClements DJ. Adv Colloid Interface Sci. 2024 Oct;332:103278. doi: 10.1016/j.cis.2024.103278. Epub 2024 Aug 14. Adv Colloid Interface Sci. 2024. PMID: 39153416 Review.
-
Jones OG, McClements DJ. Jones OG, et al. Adv Colloid Interface Sci. 2011 Sep 14;167(1-2):49-62. doi: 10.1016/j.cis.2010.10.006. Epub 2010 Nov 1. Adv Colloid Interface Sci. 2011. PMID: 21094486 Review.
-
Biopolymer-Based Delivery Systems: Challenges and Opportunities.
Joye IJ, McClements DJ. Joye IJ, et al. Curr Top Med Chem. 2016;16(9):1026-39. doi: 10.2174/1568026615666150825143130. Curr Top Med Chem. 2016. PMID: 26303423 Review.
Cited by
-
McClements DJ. McClements DJ. Adv Nutr. 2015 May 15;6(3):338S-52S. doi: 10.3945/an.114.006999. Print 2015 May. Adv Nutr. 2015. PMID: 25979507 Free PMC article. Review.
-
Kazir M, Livney YD. Kazir M, et al. Molecules. 2021 Mar 12;26(6):1559. doi: 10.3390/molecules26061559. Molecules. 2021. PMID: 33809067 Free PMC article. Review.
-
Wróblewska-Krepsztul J, Rydzkowski T, Michalska-Pożoga I, Thakur VK. Wróblewska-Krepsztul J, et al. Nanomaterials (Basel). 2019 Mar 10;9(3):404. doi: 10.3390/nano9030404. Nanomaterials (Basel). 2019. PMID: 30857370 Free PMC article. Review.
-
Keratin-Chitosan Microcapsules via Membrane Emulsification and Interfacial Complexation.
Wilson A, Ekanem EE, Mattia D, Edler KJ, Scott JL. Wilson A, et al. ACS Sustain Chem Eng. 2021 Dec 13;9(49):16617-16626. doi: 10.1021/acssuschemeng.1c05304. Epub 2021 Dec 1. ACS Sustain Chem Eng. 2021. PMID: 35024251 Free PMC article.
-
Murru C, Mohammadifar MA, Wagner JB, Badía Laiño R, Díaz García ME. Murru C, et al. Membranes (Basel). 2022 Jul 7;12(7):695. doi: 10.3390/membranes12070695. Membranes (Basel). 2022. PMID: 35877898 Free PMC article.
References
-
- Abdul-Fattah AM, Kalonia DS, Pikal MJ. 2007. The challenge of drying method selection for protein pharmaceuticals: product quality implications. J Pharm Sci 96(8):1886-916.
-
- Adamiec J, Kalemba D. 2006. Analysis of microencapsulation ability of essential oils during spray drying. Drying Technol 24:1127-32.
-
- Adhikari B, Howes T, Bhandari BR, Troung V. 2004. Effect of addition of maltodextrin on drying kinetics and stickiness of sugar and acid-rich foods during convective drying: experiments and modelling. J Food Engr 62(1):53-68.
-
- Aguilera JM. 2000. Microstructure and food product engineering. Food Technol 54(11):56-8.
-
- Aguilera JM, Stanley DW. 1999. Microstructural principles of food processing and engineering. Gaithersberg , Md. : Aspen.
LinkOut - more resources
Other Literature Sources