pubmed.ncbi.nlm.nih.gov

Plasma and cerebrospinal fluid ABeta42 for the differential diagnosis of Alzheimer's disease dementia in participants diagnosed with any dementia subtype in a specialist care setting - PubMed

  • ️Fri Jan 01 2021

Meta-Analysis

Plasma and cerebrospinal fluid ABeta42 for the differential diagnosis of Alzheimer's disease dementia in participants diagnosed with any dementia subtype in a specialist care setting

Michelle Kokkinou et al. Cochrane Database Syst Rev. 2021.

Abstract

Background: Dementia is a syndrome that comprises many differing pathologies, including Alzheimer's disease dementia (ADD), vascular dementia (VaD) and frontotemporal dementia (FTD). People may benefit from knowing the type of dementia they live with, as this could inform prognosis and may allow for tailored treatment. Beta-amyloid (1-42) (ABeta42) is a protein which decreases in both the plasma and cerebrospinal fluid (CSF) of people living with ADD, when compared to people with no dementia. However, it is not clear if changes in ABeta42 are specific to ADD or if they are also seen in other types of dementia. It is possible that ABeta42 could help differentiate ADD from other dementia subtypes.

Objectives: To determine the accuracy of plasma and CSF ABeta42 for distinguishing ADD from other dementia subtypes in people who meet the criteria for a dementia syndrome.

Search methods: We searched MEDLINE, and nine other databases up to 18 February 2020. We checked reference lists of any relevant systematic reviews to identify additional studies.

Selection criteria: We considered cross-sectional studies that differentiated people with ADD from other dementia subtypes. Eligible studies required measurement of participant plasma or CSF ABeta42 levels and clinical assessment for dementia subtype.

Data collection and analysis: Seven review authors working independently screened the titles and abstracts generated by the searches. We collected data on study characteristics and test accuracy. We used the second version of the 'Quality Assessment of Diagnostic Accuracy Studies' (QUADAS-2) tool to assess internal and external validity of results. We extracted data into 2 x 2 tables, cross-tabulating index test results (ABeta42) with the reference standard (diagnostic criteria for each dementia subtype). We performed meta-analyses using bivariate, random-effects models. We calculated pooled estimates of sensitivity, specificity, positive predictive values, positive and negative likelihood ratios, and corresponding 95% confidence intervals (CIs). In the primary analysis, we assessed accuracy of plasma or CSF ABeta42 for distinguishing ADD from other mixed dementia types (non-ADD). We then assessed accuracy of ABeta42 for differentiating ADD from specific dementia types: VaD, FTD, dementia with Lewy bodies (DLB), alcohol-related cognitive disorder (ARCD), Creutzfeldt-Jakob disease (CJD) and normal pressure hydrocephalus (NPH). To determine test-positive cases, we used the ABeta42 thresholds employed in the respective primary studies. We then performed sensitivity analyses restricted to those studies that used common thresholds for ABeta42.

Main results: We identified 39 studies (5000 participants) that used CSF ABeta42 levels to differentiate ADD from other subtypes of dementia. No studies of plasma ABeta42 met the inclusion criteria. No studies were rated as low risk of bias across all QUADAS-2 domains. High risk of bias was found predominantly in the domains of patient selection (28 studies) and index test (25 studies). The pooled estimates for differentiating ADD from other dementia subtypes were as follows: ADD from non-ADD: sensitivity 79% (95% CI 0.73 to 0.85), specificity 60% (95% CI 0.52 to 0.67), 13 studies, 1704 participants, 880 participants with ADD; ADD from VaD: sensitivity 79% (95% CI 0.75 to 0.83), specificity 69% (95% CI 0.55 to 0.81), 11 studies, 1151 participants, 941 participants with ADD; ADD from FTD: sensitivity 85% (95% CI 0.79 to 0.89), specificity 72% (95% CI 0.55 to 0.84), 17 studies, 1948 participants, 1371 participants with ADD; ADD from DLB: sensitivity 76% (95% CI 0.69 to 0.82), specificity 67% (95% CI 0.52 to 0.79), nine studies, 1929 participants, 1521 participants with ADD. Across all dementia subtypes, sensitivity was greater than specificity, and the balance of sensitivity and specificity was dependent on the threshold used to define test positivity.

Authors' conclusions: Our review indicates that measuring ABeta42 levels in CSF may help differentiate ADD from other dementia subtypes, but the test is imperfect and tends to misdiagnose those with non-ADD as having ADD. We would caution against the use of CSF ABeta42 alone for dementia classification. However, ABeta42 may have value as an adjunct to a full clinical assessment, to aid dementia diagnosis.

Copyright © 2021 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

PubMed Disclaimer

Conflict of interest statement

None known.

Figures

1
1

Study flow diagram through the screening process.

2
2

Risk of bias and applicability concerns summary: review authors' judgements about each domain for each included study

3
3

Risk of bias and applicability concerns graph: review authors' judgements about each domain presented as percentages across included studies

4
4

Summary ROC Plot of CSF ABeta42 for differentiating ADD from non‐ADD (all studies). Summary statistics: sensitivity: 79% (95% CI 73%‐85%), specificity: 60% (95% CI 52%‐67%).

5
5

Forest plot of CSF ABeta42 for differentiating ADD from non‐ADD (all studies)

6
6

Summary ROC Plot of CSF ABeta42 for differentiating ADD from non‐ADD (threshold ≤ 500 pg/ml). Summary statistics: sensitivity: 77% (95% CI 68%‐86%), specificity: 58% (95% CI 45%‐70%).

7
7

Forest plot of CSF ABeta42 for differentiating ADD from non‐ADD (threshold ≤ 500 pg/ml).

8
8

Summary ROC Plot of CSF ABeta42 for differentiating ADD from non‐ADD (threshold > 500 pg/ml). Summary statistics: sensitivity: 78% (95% CI 70%‐84%), specificity: 62% (95% CI 50%‐73%).

9
9

Forest plot of CSF ABeta42 for differentiating ADD from non‐ADD (threshold > 500 pg/ml).

10
10

Summary ROC Plot of CSF ABeta42 for differentiating ADD from VaD (all studies). Summary statistics: sensitivity: 79% (95% CI 75%‐83%), specificity: 69% (95% CI 55%‐81%).

11
11

Forest plot of CSF ABeta42 for differentiating ADD from VaD (all studies).

12
12

Summary ROC Plot of CSF ABeta42 for differentiating ADD from VaD (threshold ≤ 500 pg/ml). Summary statistics: sensitivity: 79% (95% CI 74%‐82%), specificity: 68% (95% CI 51%‐82%).

13
13

Forest plot of CSF ABeta42 for differentiating ADD from VaD (threshold ≤ 500 pg/ml).

14
14

Summary ROC Plot of CSF ABeta42 for differentiating ADD from VaD (threshold > 500 pg/ml). Summary statistics: sensitivity: 86% (95% CI 74%‐93%), specificity: 65% (95% CI 37%‐85%).

15
15

Forest plot of CSF ABeta42 for differentiating ADD from VaD (threshold > 500 pg/ml).

16
16

Summary ROC Plot of CSF ABeta42 for differentiating ADD from FTD (all studies). Summary statistics: sensitivity: 87% (95% CI 80%‐92%), specificity: 51% (95% CI 21%‐80%).

17
17

Forest plot of CSF ABeta42 for differentiating ADD from FTD (all studies).

18
18

Summary ROC Plot of CSF ABeta42 for differentiating ADD from FTD (threshold ≤ 500 pg/ml). Summary statistics: sensitivity: 80% (95% CI 77%‐84%), specificity: 69% (95% CI 49%‐84%).

19
19

Forest plot of CSF ABeta42 for differentiating ADD from FTD (threshold ≤ 500 pg/ml).

20
20

Summary ROC Plot of CSF ABeta42 for differentiating ADD from FTD (threshold > 500 pg/ml). Summary statistics: sensitivity: 83% (95% CI 71%‐91%), specificity: 76% (95% CI 58%‐87%).

21
21

Forest plot of CSF ABeta42 for differentiating ADD from FTD (threshold > 500 pg/ml).

22
22

Summary ROC Plot of CSF ABeta42 for differentiating ADD from DLB (all studies). Summary statistics: sensitivity: 77% (95% CI 70%‐83%), specificity: 66% (95% CI 51%‐78%).

23
23

Forest plot of CSF ABeta42 for differentiating ADD from DLB (all studies).

24
24

Summary ROC Plot of CSF ABeta42 for differentiating ADD from DLB ≤ 500 (pg/ml). Summary statistics: sensitivity: 79% (95% CI 69%‐86%), specificity: 68% (95% CI 45%‐85%).

25
25

Forest plot of CSF ABeta42 for differentiating ADD from DLB ≤ 500 (pg/ml).

26
26

Summary ROC Plot of CSF ABeta42 for differentiating ADD from vs NPH. Summary statistics: sensitivity: 84% (95% CI 79%‐88%), specificity: 42% (95% CI 26%‐60%).

27
27

Forest plot of CSF ABeta42 for differentiating ADD from vs NPH.

28
28

Summary ROC Plot of CSF ABeta42 for differentiating ADD from CJD. Summary statistics: sensitivity: 82% (95% CI 77%‐86%), specificity: 46% (95% CI 34%‐58%).

29
29

Forest plot of 1CSF ABeta42 for differentiating ADD from CJD.

1
1. Test

CSF ABeta42 ADD vs non‐ADD (all studies)

2
2. Test

CSF ABeta42 ADD vs non‐ADD (threshold ≤ 500 pg/ml)

3
3. Test

CSF ABeta42 ADD vs non‐ADD (threshold > 500 pg/ml)

4
4. Test

CSF ABeta42 ADD vs VaD (all studies)

5
5. Test

CSF ABeta42 AD vs VaD (threshold ≤ 500 pg/ml)

6
6. Test

CSF ABeta42 ADD vs VaD (threshold > 500 pg/ml)

7
7. Test

CSF ABeta42 ADD vs FTD (all studies)

8
8. Test

CSF ABeta42 ADD vs FTD (threshold ≤ 500 pg/ml)

9
9. Test

CSF ABeta42 vs FTD (threshold > 500 pg/ml)

10
10. Test

CSF ABeta42 ADD vs DLB (all studies)

11
11. Test

CSF ABeta42 ADD vs DLB (threshold ≤ 500 pg/ml)

12
12. Test

CSF ABeta42 ADD vs NPH

13
13. Test

CSF ABeta42 ADD vs CJD

14
14. Test

CSF ABeta42 ADD vs ARCD

15
15. Test

CSF ABeta42 ADD vs bvFTD

16
16. Test

CSF ABeta42 ADD vs PPA

Update of

  • doi: 10.1002/14651858.CD010945

Similar articles

Cited by

References

References to studies included in this review

Abu‐Rumeileh 2018 {published and unpublished data}
    1. Abu-Rumeileh S, Mometto N, Bartoletti-Stella A, Polischi B, Oppi F, Poda R, et al. Cerebrospinal fluid biomarkers in patients with frontotemporal dementia spectrum: a single-center study. Journal of Alzheimer's Disease 2018;66:551-563. - PubMed
Aerts 2011 {published data only}
    1. Aerts MB, Esselink RAJ, Claasen JAHR, Abdo WF, Bloem BR, Verbeek MM. CSF tau, Aβ42 and MHPG differentiate dementia with Lewy bodies from Alzheimer's disease. Journal of Alzheimer's Disease 2011;27:377-84. - PubMed
Baldeiras 2015 {published data only}
    1. Baldeiras I, Santana I, Joao Leitao M, Helena Ribeiro M, Pascoal R, Duro D, et al. Cerebrospinal fluid Aβ40 is similarly reduced in patients with frontotemporal lobar degeneration and Alzheimer's disease. Journal of the Neurological Sciences 2015;358(1-2):308-16. - PubMed
Bibl 2006 {published data only}
    1. Bibl M, Mollenhauer B, Esselmann H, Lewczuk P, Trenkwalder C, Brechlin P, et al. CSF diagnosis of Alzheimer's disease and dementia with Lewy bodies. Journal of Neural Transmission 2006;113(11):1771-8. - PubMed
Bibl 2007 {published data only}
    1. Bibl M, Mollenhauer S, Wolf S, Esselmann H, Lewczuk P, Kornhuber J, et al. Reduced CSF carboxyterminally truncated Aβ peptides in frontotemporal lobe degenerations. Journal of Neural Transmission 2007;114:621-8. - PubMed
Bousiges 2016 {published data only}
    1. Bousiges O, Cretin B, Lavaux T, Philippi N, Jung B, Hezard S, et al. Diagnstic value of cerebrospinal fluid biomarkers (Phospho-Tau181, total-Tau, Aβ42, and Aβ40) in prodromal stage of Alzheimer's disease and dementia with Lewy bodies. Journal of Alzheimer's Disease 2016;51:1069-1083. - PubMed
Bousiges 2018 {published data only}
    1. Bousiges O, Bombois S, Schraen S, Wallon D, Quillard MM, Gabelle A, et al. Cerebrospinal fluid Alzheimer biomarkers can be useful for discriminating dementia with Lewy bodies from Alzheimer’s disease at the prodromal stage. Journal of Neurology, Neurosurgery & Psychiatry 2018;89:467-475. - PubMed
Brettschneider 2006 {published data only}
    1. Brettschneider J, Petzold A, Schöttle D, Claus A, Riepe M, Tumani H. The neurofilament heavy chain (NfH SMI35 ) in the cerebrospinal fluid diagnosis of Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders 2006;21:291-95. - PubMed
Casoli 2019 {published and unpublished data}
    1. Casoli T, Paolini S, Fabbietti P, Fattoretti P, Paciaroni L, Fabi K, et al. Cerebrospinal fluid biomarkers and cognitive status in differential diagnosis of frontotemporal dementia and Alzheimer’s disease. Journal of International Medical Research 2019;47:4968-4980. - PMC - PubMed
de Jong 2006 {published data only}
    1. Jong D, Jansen RWMM, Kremer BPH, Verbeek MM. Cerebrospinal fluid amyloid β42 / phosphorelated tau ratio discriminates between Alzheimer's disease and vascular dementia. Journal of Gerontology 2006;61A(7):755-8. - PubMed
de Rino 2012 {published data only}
    1. Rino F, Martinelli-Boneschi F, Caso F, Zuffi M, Zabeo M, Passerini G. CSF metabolites in the differential diagnosis of Alzheimer's disease from frontal variant of frontotemporal dementia. Neurological Sciences 2012;33:973-7. - PubMed
Falgas 2020 {published data only}
    1. Falgas N, Ruiz-Peris M, Perez-Milan A, Sala-Llonch R, Antonell A, Balasa M. Contribution of CSF biomarkers to early‐onset Alzheimer's disease and frontotemporal dementia neuroimaging signatures. Human Brain Mapping 2020;41:2004-2013. - PMC - PubMed
Herbert 2014 {published data only}
    1. Herbert MK, Aerts MB, Kuiperij BH, Claassen JA, Spies PE, Esselink RAJ, et al. Addition of MHPG to Alzheimer's disease biomarkers improves differentiation of dementia with Lewy bodies from Alzheimer's disease but not other dementias. Alzheimer's and Dementia 2014;10(4):448-455. - PubMed
Kapaki 2001 {published data only}
    1. Kapaki E, Kilidireas K, Paraskevas GP, Michalopoulou M, Patsouris E. Highly increased CSF tau protein and decreased β-amyloid1-42 in sporadic CJD: a discrimination from Alzheimer's disease? Journal of Neurology, Neurosurgery and Psychiatry 2001;71:401-3. - PMC - PubMed
Kapaki 2003 {published data only}
    1. Kapaki E, Paraskevas GP, Zalonis I, Zournas C. CSF tau protein and beta-amyloid (1-42) in Alzheimer's disease diagnosis: discrimination from normal ageing and other dementias in the Greek population. European Journal of Neurology 2003;10(2):119-28. - PubMed
Kapaki 2005 {published data only}
    1. Kapaki E, Lippas I, Paraskevas GP, Theotoka I, Rabavilas A. The diagnostic value of tau protein, β-amyloid1-42 and their ratio for the discrimination of alcohol-related cognitive disorders from Alzheimer's disease in the early stages. International Journal of Geriatric Psychiatry 2005;20:722-9. - PubMed
Kapaki 2007 {published data only}
    1. Kapaki EN, Paraskevas GP, Tzerakis NG, Sfagos C, Seretis A, Kararizou E, et al. Cerebrospinal fluid tau, phospho-tau181 and b-amyloid1)42 in idiopathic normal pressure hydrocephalus: a discrimination from Alzheimer’s disease. European Journal of Neurology 2007 Feb;14(2):168-173. - PubMed
Kapaki 2008 {published data only}
    1. Kapaki E, Paraskevas GP, Papageorgiou SG, Bonakis A, Kalfakis N, Zalonis I, et al. Diagnostic value of CSF biomarker profile in frontotemporal lobar degeneration. Alzheimer Disease and Associated Disorders 2008;22(1):47-53. - PubMed
Khoonsari 2019 {published and unpublished data}
    1. Khoonsari PE, Shevchenko G, Herman S, Remnestal J, Giedraitis V, Brundin RM, et al. Improved differential diagnosis of Alzheimer’s disease by integrating ELISA and mass spectrometry-based cerebrospinal fluid biomarkers. Journal of Alzheimer's Disease 2019;67:639-651. - PMC - PubMed
Knapskog 2018 {published and unpublished data}
    1. Knapskog AB, Braekhus A, Engedal K. The effect of changing the amyloid β42 cut-off of cerebrospinal fluid biomarkers on Alzheimer disease diagnosis in a memory clinic population in Norway. Alzheimer Disease and Associated Disorders 2019;33:72-74. - PubMed
Lewczuk 2004 {published data only}
    1. Lewczuk P, Esselmann H, Otto M, Maler JM, Henkel AW, Henkel MK, et al. Neurochemical diagnosis of Alzheimer’s dementia by CSF A42, A42/A40 ratio and total tau. Neurobiology of Aging 2004;25:273–281. - PubMed
Lins 2004 {published data only}
    1. Lins H, Wichart I, Bancher C, Walle C, Jellinger KA, Rosler N. Immunoreactivities of amyloid beta peptide((1-42)) and total tau protein in lumbar cerebrospinal fluid of patients with normal pressure hydrocephalus. Journal of Neural Transmission 2004;111(3):273-80. - PubMed
Lombardi 2018 {published and unpublished data}
    1. Lombardi G, Polito C, Berti V, Ferrari C, Lucidi G, Begnoli S, et al. Biomarkers study in atypical dementia: proof of a diagnostic work-up. Neurological Sciences 2018;39:1203-1210. - PubMed
Maddalena 2003 {published data only}
    1. Maddalena A, Papassotiropoulos A, Muller-Tillmanns B, Jung HH, Hegi T, Nitsch RM, et al. Biochemical diagnosis of Alzheimer disease by measuring the cerebrospinal fluid ratio of phosphorylated tau protein to beta-amyloid peptide 42. Archives of Neurology. 2003;60(9):1202-1206. - PubMed
Marchegiani 2019 {published and unpublished data}
    1. Marchegiani F, Matacchione G, Ramini D, Marcheselli F, Recchioni R, Casoli T, et al. Diagnostic performance of new and classic CSF biomarkers in age-related dementias. Aging (Albany NY) 2019;11:2420-2429. - PMC - PubMed
Montine 2001 {published data only}
    1. Montine TJ, Kaye JA, Montine KS, McFarland L, Morrow JF, Quinn JF. Cerebrospinal fluid abeta42, tau, and f2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age-matched controls. Archives of Pathology and Laboratory Medicine. 2001;125(4):510-512. - PubMed
Paraskevas 2009 {published data only}
    1. Paraskevas GP, Kapaki E, Papageorgiou SG, Kalfakis N, Andreadou E, Zalonis I, et al. CSF biomarker profile and diagnostic value in vascular dementia. European Journal of Neurology. 16;2:205-11. - PubMed
Perani 2016 {published data only}
    1. Perani D, Cerami C, Caminiti SP, Santangelo R, Coppi E, Ferrari L, et al. Cross-validation of biomarkers to early differential diagnosis and prognosis of dementia in a clinical setting. European Journal of Nuclear Medicine and Molecular Imaging 2015;43(3):499-508. - PubMed
Rosler 2001 {published data only}
    1. Rosler N, Wichart I, Jellinger KA. Clinical significance of neurobiochemical profiles in the lumbar cerebrospinal fluid of alzheimer's disease patients. Journal of Neural Transmission. Jun 2001;108(2):231-246. - PubMed
Santangelo 2017 {published data only}
    1. Santangelo R, Cecchetti G, Bernasconi MP, Cardamone R, Barbieri A, Pinto P, et al. Cerebrospinal fluid amyloid-β 42, total tau and phosphorylated tau are low in patients with normal pressure hydrocephalus: analogies and differences with Alzheimer's disease. Journal of Alzheimer's Disease 2017;60:183-200. - PubMed
Schirinzi 2015 {published data only}
    1. Schirinzi T, Sancesario GM, Lalongo C, Imbriani P, Madeo G, Toniolo S, et al. A clinical and biochemical analysis in the differential diagnosis of idiopathic normalpressure hydrocephalus. Frontiers in Neurology 2015;6(86). - PMC - PubMed
Shi 2018 {published data only}
    1. Shi M, Tang L, Toledo J, Ginghina C, Wang H, Ar P, et al. CSF α-synuclein contributes to the differential diagnosis of Alzheimer disease. Alzheimers Dementia 2018;14:1052-1062. - PMC - PubMed
Sjogren 2000 {published data only}
    1. Sjogren M, Minthon L, Davidsson P, Granerus AK, Clarberg A, Vanderstichele H, et al. CSF levels of tau, beta-amyloid 1-42 and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. Journal of Neural Transmission. 2000;107(5):563-79. - PubMed
Smach 2008 {published data only}
    1. Smacha MA, Charfeddinea B, Lammouchib T, Harrabic I, Othmana LB, Dridia H, et al. CSF -amyloid 1–42 and tau in Tunisian patients with Alzheimer’s disease: The effect of APOE 4 allele. Neuroscience Letters 2008;440:145-149. - PubMed
Spies 2010 {published data only}
    1. Spies PE, Slats D, Sjögren JM, Kremer BP, Verhey FR, Rikkert MG, et al. The cerebrospinal fluid amyloid beta42/40 ratio in the differentiation of Alzheimer's disease from non-Alzheimer's dementia. Current Alzheimer Research 2010;7(5):470-6. - PubMed
Stefani 2005 {published data only}
    1. Stefani A, Bernardini S, Panella M, Pierantozzi M, Nuccetelli M, Kocha G, et al. AD with subcortical white matter lesions and vascular dementia: CSF markers for differential diagnosis. Journal of the Neurological Sciences 2005;237:83-88. - PubMed
Tapiola 2000 {published data only}
    1. Tapiola T, Pirttila T, Mehta PD, Alafuzoff I, Lehtovirta M, Soininen H. Relationship between apoE genotype and CSF beta-amyloid (1-42) and tau in patients with probable and definite Alzheimer's disease. Neurobiology of Aging 2000;21(5):735-40. - PubMed
Tariciotti 2018 {published data only}
    1. Tariciotti L, Casadei M, Honig LS, Teich AF, McKhann II GM, Tosto G, et al. Clinical experience with cerebrospinal fluid Aβ42, total and phosphorylated tau in the evaluation of 1,016 individuals for suspected dementia. Journal of Alzheimer's Disease 2018;65:1417-1425. - PMC - PubMed
Wiltfang 2003 {published data only}
    1. Wiltfang J, Esselmann H, Smirnov A, Bibl M, Cepek L, Steinacker P, et al. β-amyloid peptides in cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Annals of Neurology 2003;54:263-67. - PubMed

References to studies excluded from this review

Alcolea 2014 {published data only}
    1. Alcolea D, Carmona-Iragui M, Suarez-Calvet M, Sanchez-Saudinos MB, Sala I, Anton-Aguirre S, et al. Relationship between beta-secretase, inflammation and core cerebrospinal fluid biomarkers for Alzheimer's disease. Journal of Alzheimer's Disease 2014;42(1):157-67. - PubMed
Alcolea 2017 {published data only}
    1. Alcolea D, Vilaplana E, Suarez-Calvet, Ilan-Gala I, Blesa R, Clarimon J, et al. CSF sAPPbeta, YKL-40, and neurofilament light in frontotemporal lobar degeneration. American Academy of Neurology 2017;89(2):178-188. - PubMed
Balasa 2014 {published data only}
    1. Balasa M, Sanchez-Valle R, Antonell A, Bosch B, Olives J, Rami L, et al. Usefulness of biomarkers in the diagnosis and prognosis of early-onset cognitive impairment. Journal of Alzheimer's Disease 2014;40:919-927. - PubMed
Berlyand 2016 {published data only}
    1. Berlyand Y, Weintraub D, Xie SX, Mellis IA, Doshi J, Rick J, et al. An Alzheimer's disease-derived biomarker signature identifies Parkinson's disease patients with dementia. PloS One 2016;11. - PMC - PubMed
Bertens 2017 {published data only}
    1. Bertens D, Tijms BM, Scheltens P, Teunissen CE, Visser PJ. Unbiased estimates of cerebrospinal fluid beta-amyloid 1-42 cutoffs in a large memory clinic population. Alzheimer's Research and Therapy 2017;9. - PMC - PubMed
Bibl 2007b {published data only}
    1. Bibl M, Esselmann H, Mollenhauer B, Weniger G, Welge V, Liess M et al. Blood-based neurochemical diagnosis of vascular dementia: a pilot study. Journal of Neurochemistry 2007;103:467-74. - PubMed
Bibl 2008a {published data only}
    1. Bibl M, Lewczuk P, Esselmann H, Mollenhauer B, Klafki HW, Welge V et al. CSF amyloid-β 1-38 and 1-4 2in FTD and AD: biomarker performance critically depends on the detergent accessible fraction. Proteomics - Clinical Applications 2008;2:1548-56. - PubMed
Brandt 2008 {published data only}
    1. Brandt C, Bahl JC, Heegaard NH, Waldemar G, Johannsen P. Usability of cerebrospinal fluid biomarkers in a tertiary memory clinic. Dementia and Geriatric Cognitive Disorders 2008;25(6):553-8. - PubMed
Carandini 2019 {published data only}
    1. Carandini T, Arighi A, Sacchi L, Fumagalli GG, Pietroboni AM, Ghezzi L, et al. Testing the 2018 NIA-AA research framework in a retrospective large cohort of patients with cognitive impairment: from biological biomarkers to clinical syndromes. Alzheimer's Research and Therapy 2019;11. - PMC - PubMed
Hall 2012 {published data only}
    1. Hall S, Ohrfelt A, Constantinescu R, Andreasson U, Surova Y, Bostrom F, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Archives of Neurology 2012;69(11):1445-1452. - PubMed
Hampel 2018 {published data only}
    1. Hampel H, Toschi N, Baldacci F, Zetterberg H, Blennow K, Kilimann I. Alzheimer's disease biomarker-guided diagnostic workflow using the added value of six combined cerebrospinal fluid candidates: abeta1-42, total-tau, phosphorylated-tau, NFL, neurogranin, and YKL-40. Alzheimer's and Dementia 2018;14:492-501. - PubMed
Han 2012 {published data only}
    1. Han Y, Jia J, Jia X-F, Qin W, Wang S. Combination of plasma biomarkers and clinical data for the detection of sporadic Alzheimer's disease. Neuroscience Letters 2012;516:232-6. - PubMed
Illan‐gala 2019 {published data only}
    1. Illan-Gala I, Pegueroles J, Montal V, Alcolea D, Vilaplana E, Bejanin A, et al. APP-derived peptides reflect neurodegeneration in frontotemporal dementia. Annals of Clinical and Translational Neurology 2019;6:2518-2530. - PMC - PubMed
Karadas 2017 {published data only}
    1. Karadas O, Koc G, Ozon AO, Ozturk B, Konukoglu D. Biomarkers of Alzheimer's disease and vascular dementia simultaneously sampled from serum and cerebrospinal fluid. Turkish Journal of Geriatrics 2017;20(1):1-7.
Parnetti 2011 {published data only}
    1. Parnetti L, Chiasserini D, Bellomo G, Giannandrea D, Carlo C, Qureshi MM et al. Cerebrospinal fluid tau/a-Synuclein ratio in Parkinson’s disease and degenerative dementias. Movement Disorders 2011;26(8):1429-35. - PubMed
Prikrylova Vranova 2014 {published data only}
    1. Prikrylova Vranova H, Henykova E, Kaiserova M, Mensikova K, Vastik M, Mares J, et al. Tau protein, beta-amyloid 1-42 and clusterin CSF levels in the differential diagnosis of Parkinsonian syndrome with dementia. Journal of the Neurological Sciences 2014;343:120-124. - PubMed
Skillback 2015 {published data only}
    1. Skillback T, Farahmand BY, Rosen C, Mattsson N, Nagga K, Kilander L, et al. Cerebrospinal fluid tau and amyloid -β1-42 in patients with dementia. Brain 2015;138:2716-2731. - PubMed
Smach 2008a {published data only}
    1. Smach MA, Charfeddine B, Lammouchi T, Dridi H, Othman LB, Bennamou S, et al. Interest of CSF –amyloid1-42 and t-tau protein level determinations for the diagnosis of Alzheimer’s disease [Intérêt du dosage de la protéine amyloïde Aβ1-42 et de la protéine tau dans le LCR pour le diagnostic de la maladie d’Alzheimer: une étude tunisienne]. Annales de Biologie Clinique 2008;66(5):531-5. - PubMed
Stoeck 2014 {published data only}
    1. Stoeck K, Schmitz M, Ebert E, Schmidt C, Zerr I. Immune responses in rapidly progressive dementia: a comparative study of neuroinflammatory markers in Creutzfeldt-Jakob disease, Alzheimer's disease and multiple sclerosis. Journal of Neuroinflammation 2014;11(170). - PMC - PubMed
Toledo 2012 {published data only}
    1. Toledo JB, Brettschneider J, Grossman M, Arnold SE, Hu WT, Xie SX et al. CSF biomarkers cutoffs: the importance of coincident neuropathological disaease. Acta Neuropathologica 2012;124(1):23-35. - PMC - PubMed
Uslu 2012 {published data only}
    1. Uslu S, Akarkarasu ZE, Ozbabalik D, Ozkan S, Colak O, Demirkan ES et al. Levels of amyloid beta-42, interleukin-6 and tumor necrosis factor-alpha in Alzheimer's disease and vascular dementia. Neurochemical Research 2012;37:1554-9. - PubMed
van Steenoven 2018 {published data only}
    1. Steenoven I, Majbour NK, Vaikath NN, Berendse HW, Flier WM, de Berg WDJ, et al. Alpha-synuclein species as potential cerebrospinal fluid biomarkers for dementia with Lewy bodies. Movement Disorders 2018;33:1724-1733. - PMC - PubMed
van Steenoven 2019 {published data only}
    1. Steenoven I, Noli B, Cocco C, Ferri GL, Oeckl P, Otto M, et al. VGF peptides in cerebrospinal fluid of patients with dementia with Lewy bodies. International Journal of Molecular Sciences 2019;20:4674. - PMC - PubMed
Vergallo 2017 {published data only}
    1. Vergallo A, Carlessi C, Pagni C, Sean Giorgi F, Baldacci F, Petrozzi L, et al. A single centre study: Aβ42/p-Tau181 CSF ratio to discriminate AD from FTD in clinical setting. Neurological Sciences 2017;38:1791-1787. - PubMed
Wennstrom 2015 {published data only}
    1. Wennstrom M, Hall S, Nagga K, Londos E, Minthon L, Hansson O. Cerebrospinal fluid levels of IL-6 are decreased and correlate with cognitive status in DLB patients. Alzheimer's Research and Therapy 2015;7(63). - PMC - PubMed
Zwan 2014 {published data only}
    1. Zwan M, Harten A, Ossenkoppele R, Bouwman F, Teunissen C, Adriaanse S, et al. Concordance between cerebrospinal fluid biomarkers and [11C]PIB PET in a memory clinic cohort. Journal of Alzheimer's Disease 2014;41:801-807. - PubMed

Additional references

Albert 2011
    1. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendation from the National Institute on Ageing and Alzheimer's Association workgroup. Alzheimer's & Dementia 2011;7(3):270-9. - PMC - PubMed
APA 1987
    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 3rd revised edition. American Psychiatric Association 1987.
APA 1994
    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th edition. American Psychiatric Association 1994.
APA 2000
    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th edition (revised). American Psychiatric Association, Washington, DC 2000.
Beach 2012
    1. Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the clinical diagnosis of Alzheimer's disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010. Journal of Neuropathology and Experimental Neurology 2012;71. - PMC - PubMed
Beishon 2019
    1. Beishon LC, Batterham AP, Quinn TJ, Nelson CP, Panerai RB, Robinson T, Haunton VJ. Addenbrooke’s Cognitive Examination III (ACE-III) and mini-ACE for the detection of dementia and mild cognitive impairment. Cochrane Database of Systematic Reviews 2019, Issue 12. Art. No: CD013282. [DOI: 10.1002/14651858.CD013282.pub2] - DOI - PMC - PubMed
Beyer 2009
    1. Beyer K, Domingo-Sabat M, Ariza A. Molecular pathology of Lewy body diseases. International Journal of Molecular Science 2009;10:724-745. - PMC - PubMed
Beynon 2013
    1. Beynon R, Leeflang MM, McDonald S, Eisinga A, Mitchell RL, Whiting P, et al. Search strategies to identify diagnostic accuracy studies in MEDLINE and EMBASE. Cochrane Database of Systematic Reviews 2013;(9):Art. No.: MR000022 DOI: 10.1002/14651858.MR000022.pub3. - PMC - PubMed
Blurton‐Jones 2006
    1. Blurton-Jones M, Laferla FM. Pathways by which Abeta facilitates tau pathology. Current Alzheimer Research 2016;3(5):437-48. - PubMed
Boxer 2005
    1. Boxer AL, Miller BL. Clinical features of frontotemporal dementia. Alzheimer Disease and Associated Disorders 2005;19:S3-6. - PubMed
Burns 2005
    1. Burns A, O'Brien J, Ames D. Dementia. Oxford University Press 2005.
Chui 1992
    1. Chui HC, Victoroff JI, Margolin D, Jagust W, Shankle R, Katzman R. Criteria for the diagnosis of ischemic vascular dementia proposed by the State of California Alzheimer's Disease Diagnostic and Treatment Centers. Neurology 1992;42(3 pt 1):473-80. - PubMed
Cochrane 2020 [Computer program]
    1. The Cochrane Collaboration Review Manager (RevMan). The Cochrane Collaboration, Version Version 5.4. The Cochrane Collaboration, 2020.
Cummings 2019
    1. Cummings J. The role of biomarkers in Alzheimer’s disease drug development. Advances in Experimental Medicine and Biology 2019;1118:29-61. - PMC - PubMed
Davis 2015
    1. Davis D, Creavin S, Yip J, Noel-Storr A, Brayne C, Cullum S. Montreal Cognitive Assessment for the diagnosis of Alzheimer’s disease and other dementias. Cochrane Database of Systematic Reviews 2015, Issue 10. Art. No: CD010775. [DOI: 10.1002/14651858.CD010775.pub2] - DOI - PMC - PubMed
De Strooper 2010
    1. De Strooper B, Vassar R, Golde T. The secretases: Enzymes with therapeutic potential in Alzheimer's disease. Nature Reviews: Neurology 2010;6:99-107. - PMC - PubMed
DeTure 2019
    1. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Molecular Neurodegeneration 2019;14. - PMC - PubMed
Dubois 2007
    1. Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS–ADRDA criteria. Lancet Neurology 2007;6:734-746. - PubMed
Dubois 2010
    1. Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, et al. Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurolology 2010;9(11):1119-27. - PubMed
Dubois 2014
    1. Dubois B, Feldman HH, Jacova C, Hampal H, Molinuevo JL, DeKosky ST, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurology 2014;6:614-29. - PubMed
Fantoni 2018
    1. Fantoni ER, Chalkidou A, O’ Brien JT, Farrar G, Hammers A. A systematic review and aggregated analysis on the impact of amyloid PET brain imaging on the diagnosis, diagnostic confidence, and management of patients being evaluated for Alzheimer’s disease. Journal of Alzheimer's Disease 2018;63:783-796. - PMC - PubMed
Freeman 2019
    1. Freeman SC, Kerby CR, Patel A, Cooper NJ, Quinn T, Sutton AJ. Development of an interactive web-based tool to conduct and interrogate meta-analysis of diagnostic test accuracy studies. BMC Medical Research Methodology 2019;19:81. - PMC - PubMed
Hakim 1965
    1. Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. Journal of the Neurological Sciences 1965;2(4):307-327. - PubMed
Hansson 2019
    1. Hansson O, Lehmann S, Otto M, Zetterberg H, Lewczuk P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s Disease. Alzheimer's Research & Therapy 2019;11. - PMC - PubMed
Iadecola 2014
    1. Iadecola C. The pathobiology of vascular dementia. Neuron 2013;4. - PMC - PubMed
Iadecola 2019
    1. Iadecola C, Duering M, Hachinski V, Joutel A, Pendelbury S, Schneider J, et al. Vascular cognitive impairment and dementia. Journal of the American College of Cardiology 2019;73:3326-3334. - PMC - PubMed
Jansen WJ 2015
    1. Jansen WJ, Ossenkoppele R, Knol D, Tijms BM, Scheltens P, Verhey FR, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 2015;313(19):1924-38. - PMC - PubMed
Karantzoulis 2011
    1. Karantzoulis S, Galvin JE. Distinguishing Alzheimer's disease from other major forms of dementia. Expert Review of Neurotherapeutics 2011;11:1579-1591. - PMC - PubMed
Khoury 2019
    1. Khoury R, Ghossoub E. Diagnostic biomarkers of Alzheimer’s disease: A state-of-the-art review. Biomarkers in Neuropsychiatry 2019;1:100005.
Klohs 2019
    1. Klohs J. An integrated view on vascular dysfunction in Alzheimer's disease. Neurodegenerative Diseases 2019;19:109-127. - PubMed
Knapp 2007
    1. Knapp, M, Prince, M. Dementia UK. Alzheimer's Society 2014. Available from: https://www.alzheimers.org.uk/sites/default/files/2018-10/Dementia_UK_Fu....
Kril 1999
    1. Kril JJ, Halliday GM. Brain shrinkage in alcoholics: a decade on and what have we learned? Progress in Neurobiology 1999;58(4):381-7. - PubMed
Lopes 2010
    1. Lopes MA, Furtado EF, Ferrioli E, Litvoc J, Bottino CM. Prevalence of alcohol-related problems in an elderly population and their association with cognitive impairment and dementia. Alcoholism: Clinical and Experimental Research 2010;34(4):726-33. - PubMed
Lopez 1999
    1. Lopez OL, Litvan I, Catt KE, Stowe R, Klunk W, Kaufer DI, et al. Accuracy of four clinical diagnostic criteria for the diagnosis of neurodegenerative dementias. Neurology 1999;53(6). - PubMed
Lund Manchester Groups 1994
    1. The Lund Manchester Groups. Clinical and neuropathological criteria for frontotemporal dementia. Journal of Neurology, Neurosurgery, and Psychiatry 1994;57(4):416-8. - PMC - PubMed
McKeith 1996
    1. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996;47(5):1113-24. - PubMed
McKeith 2002
    1. McKeith IG. Dementia with Lewy bodies. British Journal of Psychiatry 2002;180:144-7. - PubMed
McKeith 2005
    1. McKeith IG, Dickson DW, Lowe J, Emre M, O'Brien JT, Feldman H, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65(12):1863-72. - PubMed
McKhann 1984
    1. McKhann GM, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34(7):939-44. - PubMed
McKhann 2011
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Clifford RJ, Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendation from the National Institute on Ageing and Alzheimer's Association workgroup. Alzheimer's & Dementia 2011;7(3):263-9. - PMC - PubMed
Murphy 2010
    1. Murphy MP, LeVine H. Alzheimer’s disease and the β-amyloid peptide. Journal of Alzheimer's Disease 2010;19:311. - PMC - PubMed
Nakamura 2018
    1. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Dore V, et al. High performance plasma amyloid-beta biomarkers for Alzheimer's disease. Nature 2018;554:249-254. - PubMed
Neary 1998
    1. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1546-54. - PubMed
NICE 2018
    1. National Institute of Clinical Excellence (NICE). Dementia: assessment, management and support for people living with dementia and their carers. NICE 2018. - PubMed
Niemantsverdriet 2017
    1. Niemantsverdriet E, Valckx S, Bjerke M, Engelborghs S. Alzheimer’s disease CSF biomarkers: clinical indications and rational use. Acta Neurologica Belgica 2017;117:591-602. - PMC - PubMed
Noel‐Storr 2014
    1. Noel-Storr A, McCleery JM, Richard E, Ritchie CW, Flicker L, Cullum SJ, et al. Reporting standards for studies of diagnostic test accuracy in dementia: The STARDdem Initiative. Neurology 2014;83(4):364-73. - PMC - PubMed
O'Brien 2017
    1. O'Brien JT, Holmes C, Jones M, Jones R, Livingston G, McKeith I, et al. Clinical practice with anti-dementia drugs: A revised (third) consensus statement from the British Association for Psychopharmacology. Journal of Psychopharmacology 2017;31:147-168. - PubMed
Ossenkoppele 2015
    1. Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, Flier WM, Berckel BNM, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 2015;313:1939-1949. - PMC - PubMed
Otto 2000
    1. Otto M, Esselmann H, Schulz-Shaeffer W, Neumann M, Schröter A, Ratzka P, et al. Decreased ß-amyloid1-42 in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurology 2000;54(5):1099-102. - PubMed
Outeiro 2019
    1. Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, et al. Dementia with Lewy bodies: an update and outlook. Molecular Neurodegeneration 2019;14:5. - PMC - PubMed
Parkkinen 2008
    1. Parkkinen L, Pirttilä T, Alafuzoff I. Applicability of current staging/categorization of á-synuclein pathology and their clinical relevance. Acta Neuropathologica 2008;115(4):399-407. - PMC - PubMed
Patel 2020
    1. Patel A, Cooper NJ, Freeman SC, Sutton AJ. Graphical enhancements to summary receiver operating characteristic plots to facilitate the analysis and reporting of meta-analysis of diagnostic test accuracy data. Research Synthesis Methods 2020:1-11. - PubMed
Prince 2015
    1. Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. World Alzheimer Report 2015 The Global Impact of Dementia An analysis of prevalence, incidence, cost and trends. Alzheimer's Disease International 2015:1-84.
Quinn 2012
    1. Quinn TJ, McShane R, Fearon P, Young C, Noel-Storr A, Stott DJ. IQCODE for the diagnosis of Alzheimer's disease dementia and other dementias within a community setting. Cochrane Database of Systematic Reviews 2012, Issue 9. Art. No: CD010079. [DOI: 10.1002/14651858.CD010079] - DOI
Quinn 2014
    1. Quinn T, Fearon P, Noel-Storr A, Young C, McShane R, Stott D. Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) for the diagnosis of dementia within community dwelling populations. Cochrane Database of Systematic Reviews 2014, Issue 4. Art. No: CD010079. [DOI: 10.1002/14651858.CD010079.pub2] - DOI - PubMed
Rabinovici 2019
    1. Rabinovici GD, Gatsonis C, Apgar C, Chaudhary K, Gareen I, Hanna L, et al. Association of Amyloid Positron Emission Tomography with Subsequent Change in Clinical Management Among Medicare Beneficiaries With Mild Cognitive Impairment or Dementia. JAMA 2019;321(13). - PMC - PubMed
Ritchie 2012
    1. Ritchie CW, Ritchie K. The PREVENT study: a prospective cohort study to identify mid-life biomarkers of late-onsetAlzheimer's disease. BMJ Open 2012;2(6). - PMC - PubMed
Ritchie 2014
    1. Ritchie C, Smailagic N, Noel-Storr AH, Takwoingi Y, Flicker L, Mason SE, McShane R. Plasma and cerebrospinal fluid amyloid beta for the diagnosis of Alzheimer's disease dementiaand other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2014;6. - PMC - PubMed
Ritchie 2016
    1. Ritchie CW, Molinuevo JL, Truyen L, Satlin A, Van der Geyten S, Lovestone S. Development of interventions for the secondary prevention of Alzheimer's dementia: the EuropeanPrevention of Alzheimer's Dementia (EPAD) project. Lancet Psychiatry 2016;3(2):179-86. - PubMed
Ritchie 2017
    1. Ritchie C, Smailagic N, Noel-Storr A, Ukoumunne O, Ladds EC, Martin S. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementia in people with mild cognitive impairment (MCI). Cochrane Database of Systematic Reviews 2017, Issue 3. Art. No: CD010803. [DOI: 10.1002/14651858.CD010803.pub2] - DOI - PMC - PubMed
Ritchie 2018
    1. Ritchie CW, Muniz-Terrera G. Models for dementia risk prediction: so much activity brings a need for coordination and clarity. Journal of Neurology, Neurosurgery and Psychiatry 2018;90:372. - PubMed
Rizzo 2018
    1. Rizzo G, Arcuti S, Copetti M, Alessandria M, Savica R, Fontana A, Liguori R, Logroscino G. Accuracy of clinical diagnosis of dementia with Lewy bodies: a systematic review and meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry 2018;89(4). - PubMed
Robinson 2015
    1. Robinson L, Taylor JP. Dementia: timely diagnosis and early intervention. BMJ 2015;350:h3029. - PMC - PubMed
Roman 1993
    1. Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993;43(2):250-60. - PubMed
Ryan 2018
    1. Ryan J, Fransquet P, Wrigglesworth J, Lacaze P. Phenotypic heterogeneity in dementia: a challenge for epidemiology and biomarker studies. Frontiers of Public Health 2018;6:181. - PMC - PubMed
Sadashivaiah 2009
    1. Sadashivaiah J, McLure. Tuohy needle can reduce the incidence of severe post dural puncture headache. Anaesthesia 2009;64(12):1379-80. - PubMed
Shaw 2009
    1. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Annals of Neurology 2009;65(4). - PMC - PubMed
Takami 2009
    1. Takami M, et al. Gamma-secretase: Successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci 2009;29:13042-13052. - PMC - PubMed
Thomas 2001
    1. Thomas VS, Rockwood KJ. Alcohol abuse, cognitive impairment, and mortality among older people. Journal of the American Geriatrics Society 2001;49(4):415-20. - PubMed
Van Everbroeck 1999
    1. Van Everbroeck B, Green AJ, Pals P, Martin JJ, Cras P. Decreased levels of amyloid-beta 1-42 in cerebrospinal fluid of Creutzfeldt-Jakob Disease patients. Journal of Alzheimer's Disease 1999;1(6):419-24. - PubMed
Wetterling 1996
    1. Wetterling T, Kanitz RD, Borgis KJ. Comparison of different diagnostic criteria for vascular dementia (ADDTC, DSM-IV, ICD-10, NINDS-AIREN). Stroke 1996;27(1):30-6. - PubMed
Whiting 2011
    1. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine 2011;155(8):529-36. - PubMed
WHO 1993
    1. World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders. World Health Organization 1993.
WHO 1998
    1. World Health Organization. Global surveillance, diagnosis, and therapy of human transmissible spongiform encephalopathies: report of WHO consultation. World Health Organization 1998.
Wilkosz 2010
    1. Wilkosz PA, Seltman HJ, Devlin B, Weamer EA, Lopez OL, DeKosky ST, et al. Trajectories of cognitive decline in Alzheimer’s disease. International Psychogeriatrics 2010;22:281-290. - PMC - PubMed
Young 2018
    1. Young JJ, Lavakumar M, Tampi D, Balachandran S, Tampi RR. Frontotemporal dementia: latest evidence and clinical implications. Ther Adv Psychopharmacol 2018;8:33-48. - PMC - PubMed
Zerr 2009
    1. Zerr I, Kallenberg K, Summers DM, et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain 2009;132:2659-2668. - PMC - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources