Atrial and Sinoatrial Node Development in the Zebrafish Heart - PubMed
- ️Fri Jan 01 2021
Review
Atrial and Sinoatrial Node Development in the Zebrafish Heart
Kendall E Martin et al. J Cardiovasc Dev Dis. 2021.
Abstract
Proper development and function of the vertebrate heart is vital for embryonic and postnatal life. Many congenital heart defects in humans are associated with disruption of genes that direct the formation or maintenance of atrial and pacemaker cardiomyocytes at the venous pole of the heart. Zebrafish are an outstanding model for studying vertebrate cardiogenesis, due to the conservation of molecular mechanisms underlying early heart development, external development, and ease of genetic manipulation. Here, we discuss early developmental mechanisms that instruct appropriate formation of the venous pole in zebrafish embryos. We primarily focus on signals that determine atrial chamber size and the specialized pacemaker cells of the sinoatrial node through directing proper specification and differentiation, as well as contemporary insights into the plasticity and maintenance of cardiomyocyte identity in embryonic zebrafish hearts. Finally, we integrate how these insights into zebrafish cardiogenesis can serve as models for human atrial defects and arrhythmias.
Keywords: atrium; congenital heart defects; heart development; sinoatrial node; zebrafish.
Conflict of interest statement
The authors declare no conflict of interest.
Figures

Stages of zebrafish heart development. (A) At 5 h post-fertilization (hpf), cardiac progenitors are located in the lateral marginal zone, with atrial progenitors located more ventrally than ventricular progenitors. (B) Following gastrulation at the tailbud stage (10 hpf), cardiac progenitors migrate to the anterior lateral plate mesoderm (ALPM). (C) In the ALPM, progenitors begin to differentiate and express chamber-specific genes. (D) Cells then migrate to the midline and fuse, forming the cardiac disc where atrial cardiomyocytes surround ventricular cardiomyocytes. (E) The disc elongates to form the linear heart tube, which begins beating by 24 hpf. At 28 hpf, the dominant pacemaker covers a large area at the venous pole. (F) By 48 hpf, the heart has finished looping and the two chambers have formed. Here, the pacemaker is a ring at the venous pole. (G) By 72 hpf, the dominant pacemaker is restricted to a small population of cells in the inner curvature at the venous pole of the atrium. (H) In the adult heart, the bulbus arteriosus and sinus venosus, which serve as the outflow and inflow tracts, respectively, have matured. The dominant pacemaker is located at the sinus venosus–atrial junction.

Signaling pathways required for different stages of atrial development and cardiac maintenance in zebrafish. (A) Pathways required for specification of chamber progenitors in the early embryo. (B) Factors responsible for differentiation of atrial cardiomyocytes within the ALPM and at the venous pole. (C) Genes shown to promote or repress atrial identity within differentiated embryonic ventricular cardiomyocytes and repress ventricular gene expression in atrial cardiomyocytes. A—atrium, V—ventricle.

Molecular network shown to be responsible for differentiation of the sinoatrial node (SAN) in embryonic zebrafish.
Similar articles
-
Martin KE, Ravisankar P, Beerens M, MacRae CA, Waxman JS. Martin KE, et al. Elife. 2023 May 15;12:e77408. doi: 10.7554/eLife.77408. Elife. 2023. PMID: 37184369 Free PMC article.
-
Minhas R, Loeffler-Wirth H, Siddiqui YH, Obrębski T, Vashisht S, Abu Nahia K, Paterek A, Brzozowska A, Bugajski L, Piwocka K, Korzh V, Binder H, Winata CL. Minhas R, et al. BMC Genomics. 2021 Oct 2;22(1):715. doi: 10.1186/s12864-021-08016-z. BMC Genomics. 2021. PMID: 34600492 Free PMC article.
-
Molecular pathway for the localized formation of the sinoatrial node.
Mommersteeg MT, Hoogaars WM, Prall OW, de Gier-de Vries C, Wiese C, Clout DE, Papaioannou VE, Brown NA, Harvey RP, Moorman AF, Christoffels VM. Mommersteeg MT, et al. Circ Res. 2007 Feb 16;100(3):354-62. doi: 10.1161/01.RES.0000258019.74591.b3. Epub 2007 Jan 18. Circ Res. 2007. PMID: 17234970
-
Pathways Regulating Establishment and Maintenance of Cardiac Chamber Identity in Zebrafish.
Yao Y, Marra AN, Yelon D. Yao Y, et al. J Cardiovasc Dev Dis. 2021 Jan 29;8(2):13. doi: 10.3390/jcdd8020013. J Cardiovasc Dev Dis. 2021. PMID: 33572830 Free PMC article. Review.
-
Fibrosis: a structural modulator of sinoatrial node physiology and dysfunction.
Csepe TA, Kalyanasundaram A, Hansen BJ, Zhao J, Fedorov VV. Csepe TA, et al. Front Physiol. 2015 Feb 12;6:37. doi: 10.3389/fphys.2015.00037. eCollection 2015. Front Physiol. 2015. PMID: 25729366 Free PMC article. Review.
Cited by
-
Burggren W, Abramova R, Bautista NM, Fritsche Danielson R, Dubansky B, Gupta A, Hansson K, Iyer N, Jagadeeswaran P, Jennbacken K, Rydén-Markinhutha K, Patel V, Raman R, Trivedi H, Vazquez Roman K, Williams S, Wang QD. Burggren W, et al. Biol Open. 2024 Sep 15;13(9):bio060230. doi: 10.1242/bio.060230. Epub 2024 Sep 12. Biol Open. 2024. PMID: 39263862 Free PMC article.
-
Song M, Yuan X, Racioppi C, Leslie M, Stutt N, Aleksandrova A, Christiaen L, Wilson MD, Scott IC. Song M, et al. Sci Adv. 2022 Mar 11;8(10):eabg0834. doi: 10.1126/sciadv.abg0834. Epub 2022 Mar 11. Sci Adv. 2022. PMID: 35275720 Free PMC article.
-
The MEK-ERK signaling pathway promotes maintenance of cardiac chamber identity.
Yao Y, Gupta D, Yelon D. Yao Y, et al. Development. 2024 Feb 15;151(4):dev202183. doi: 10.1242/dev.202183. Epub 2024 Feb 13. Development. 2024. PMID: 38293792 Free PMC article.
-
Zebrafish as a Model of Cardiac Pathology and Toxicity: Spotlight on Uremic Toxins.
Coppola A, Lombari P, Mazzella E, Capolongo G, Simeoni M, Perna AF, Ingrosso D, Borriello M. Coppola A, et al. Int J Mol Sci. 2023 Mar 16;24(6):5656. doi: 10.3390/ijms24065656. Int J Mol Sci. 2023. PMID: 36982730 Free PMC article. Review.
-
Stoyek MR, MacDonald EA, Mantifel M, Baillie JS, Selig BM, Croll RP, Smith FM, Quinn TA. Stoyek MR, et al. Front Physiol. 2022 Feb 28;13:818122. doi: 10.3389/fphys.2022.818122. eCollection 2022. Front Physiol. 2022. PMID: 35295582 Free PMC article.
References
-
- Al Turki S., Manickaraj A.K., Mercer C.L., Gerety S.S., Hitz M.P., Lindsay S., D’Alessandro L.C.A., Swaminathan G.J., Bentham J., Arndt A.K., et al. Rare variants in NR2F2 cause congenital heart defects in humans. Am. J. Hum. Genet. 2014;94:574–585. doi: 10.1016/j.ajhg.2014.03.007. - DOI - PMC - PubMed
-
- Nakamura E., Makita Y., Okamoto T., Nagaya K., Hayashi T., Sugimoto M., Manabe H., Taketazu G., Kajino H., Fujieda K. 5.78 Mb terminal deletion of chromosome 15q in a girl, evaluation of NR2F2 as candidate gene for congenital heart defects. Eur. J. Med. Genet. 2011;54:354–356. doi: 10.1016/j.ejmg.2010.12.004. - DOI - PubMed
-
- Benson D.W., Silberbach G.M., Kavanaugh-McHugh A., Cottrill C., Zhang Y., Riggs S., Smalls O., Johnson M.C., Watson M.S., Seidman J.G., et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Investig. 1999;104:1567–1573. doi: 10.1172/JCI8154. - DOI - PMC - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources