Refining the marine reptile turnover at the Early-Middle Jurassic transition - PubMed
- ️Fri Jan 01 2021
Refining the marine reptile turnover at the Early-Middle Jurassic transition
Valentin Fischer et al. PeerJ. 2021.
Abstract
Even though a handful of long-lived reptilian clades dominated Mesozoic marine ecosystems, several biotic turnovers drastically changed the taxonomic composition of these communities. A seemingly slow paced, within-geological period turnover took place across the Early-Middle Jurassic transition. This turnover saw the demise of early neoichthyosaurians, rhomaleosaurid plesiosaurians and early plesiosauroids in favour of ophthalmosaurid ichthyosaurians and cryptoclidid and pliosaurid plesiosaurians, clades that will dominate the Late Jurassic and, for two of them, the entire Early Cretaceous as well. The fossil record of this turnover is however extremely poor and this change of dominance appears to be spread across the entire middle Toarcian-Bathonian interval. We describe a series of ichthyosaurian and plesiosaurian specimens from successive geological formations in Luxembourg and Belgium that detail the evolution of marine reptile assemblages across the Early-Middle Jurassic transition within a single area, the Belgo-Luxembourgian sub-basin. These fossils reveal the continuing dominance of large rhomaleosaurid plesiosaurians, microcleidid plesiosaurians and Temnodontosaurus-like ichthyosaurians up to the latest Toarcian, indicating that the structuration of the upper tier of Western Europe marine ecosystems remained essentially constant up to the very end of the Early Jurassic. These fossils also suddenly record ophthalmosaurid ichthyosaurians and cryptoclidid plesiosaurians by the early Bajocian. These results from a geographically-restricted area provide a clearer picture of the shape of the marine reptile turnover occurring at the early-Middle Jurassic transition. This event appears restricted to the sole Aalenian stage, reducing the uncertainty of its duration, at least for ichthyosaurians and plesiosaurians, to 4 instead of 14 million years.
Keywords: Aalenian; Bajocian; Cryptoclididae; Extinction; Faunal turnover; Ichthyosauria; Ophthalmosauridae; Plesiosauria; Toarcian.
© 2021 Fischer et al.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures

Data extracted from the paleobiology database on the 26th March 2020 (see Acknowledgements for the main contributors of these data). Silhouettes originate from phylopic.org, Licensed under CC BY 3.0 SA: Dakosaurus by Dmitry Bogdanov and T. Michael Keesey; Meyerasaurus, Eurhinosaurus, Temnodontosaurus, Plesiopterys and Ophthalmosaurus by Gareth Monger; Rhomaleosaurus and Stenopterygius by Scott Hartmann; Peloneustes by Nobu Tamura and T. Michael Keesey; Albertonectes by Frank Denota (CC 1.0).


Selected anatomy of specimen MNHNL TM212. (A and B) left coracoid in ventral (A) and anteroventral (B) views. (C, E and F) left humerus in anterodorsal (C), distal (E) and proximal (F) views. (D) Left forefin in ventral view.

(A–E) rhomaleosaurid left humerus MNHNL DOU307 in ventral (A), anterior (B), dorsal (C), proximal (D), and distal (E) views. (F–H) rhomaleosaurid humerus MNHNL KA109 in dorsal/ventral (F), proximal (H) and distal (H) views.

(A and B) large, Temnodontosaurus-like (Parvipelvia indet.) caudal centrum IRSNB R 436 in anterior (A) and lateral (B) views. (C and D) probable thunnosaurian caudal centrum IRSNB R 437
in anterior (C) and dorsal (D) views. (E and F) ichthyosaurian distal tooth IRSNB R 438 in labial (E) and mesial (F) views. (G and H) probable non-ophthalmosaurid (Parvipelvia indet.) left angular IRSNB R 439 in lateral (G) and medial (H) views. (I–K) ichthyosaurian right quadrate IRSNB R 440 in lateral (I), medial (J) and posterior (K) views.
(A–C) left coracoid of a non-baracromian parvipelvian MNHNL DOU353 in ventral (A), lateral (B), and posterior (C) views. (D–F) large parvipelvian caudal centrum MNHNL DOU378 in dorsal (D), anterior (E), and cross-sectional (F) views. (G) small parvipelvian caudal centrum MNHNL DOU998 in anteroventral view. (H and I) parvipelvian dorsal centrum MNHNL DOU944 in anterior (H) and lateral (I) views.

(A) plesiosaurian tooth crown MNHNL DOU906 in ?mesial view. (B) rhomaleosaurid right humerus MNHNL DOU558 in dorsal view. (C–F) rhomaleosaurid right humerus MNHNL DOU324a in proximal (C), dorsal (D), posterior (E) and distal (F) views. (G) juvenile rhomaleosaurid propodial MNHNL DOU324b.

(A and B) rhomaleosaurid pectoral vertebra MNHNL DOU954 in anterior (A) and ventral (B) views. (C–G) cf. Microcleidus cervical vertebra MNHNL DOU978 in anterior (C), ventral (D), dorsal (E), lateral (F) and oblique (G) views. (H–J) rhomaleosaurid pectoral vertebra MNHNL DOU723 in anterior (H), lateral (I) and posterior (J) views. (K–N) plesiosaurian sacral vertebra MNHNL DOU724 in dorsal (K), anterior (L), posterolateral (M) and ventral (N) views. (O–Q) rhomaleosaurid pectoral vertebra MNHNL DOU722 in anterior (O), lateral (P) and posterior (Q) views.

(A–D) non-cryptoclidid plesiosauroid cervical centrum MNHNL BU157 in anterior (A), dorsal (B), ventral (C) and oblique (D) views. (E–G) plesiosaur juvenile caudal centrum MNHNL HU384 in lateral (E), anterior (F) and anteroventral (G) views. (H and I) Fragmentary ichthyosaurian rostrum MNHN HU242.

(A–F) cryptoclidid propodial MNHNL BM782 in anterior (A), proximal (B), dorsal (C), ventral (D), posterior (E) and distal (F) views. (G and H) parvipelvian MNHNL BM392 centra (G) and sclerotic element in lateral view (H). (I–O) ophthalmosaurid surangular and teeth MNHNL BM780_781: anterior tooth in labial (I) and basal (J) views; mid-rostrum tooth in labial (K) and basal (L) views; posterior tooth in labial view (M); right angular in lateral (N) and medial (O) views. Abbreviation: PAE, posterior accessory epipodial element.

Selected anatomy of specimen MNHNL BM779. (A–C) right exoccipital in anterolateral (A), posteromedial (B) and posterior (C) views. (D and E) suraoccipital in posterior (D) and ventral (E) views. (F–H) left scapula in anterior (F), medial (G), and lateral (H) views. (I–K) right quadrate in lateral (I), anterior (J), and condylar (K) views. (L) right parietal in dorsal view. (M and N) right humerus in posterior (M) and dorsal (N) views. (O and P) right ulna in posterior (O) and dorsal (P) views.
Similar articles
-
The rise of macropredatory pliosaurids near the Early-Middle Jurassic transition.
Sachs S, Madzia D, Thuy B, Kear BP. Sachs S, et al. Sci Rep. 2023 Oct 16;13(1):17558. doi: 10.1038/s41598-023-43015-y. Sci Rep. 2023. PMID: 37845269 Free PMC article.
-
Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition.
Benson RB, Druckenmiller PS. Benson RB, et al. Biol Rev Camb Philos Soc. 2014 Feb;89(1):1-23. doi: 10.1111/brv.12038. Epub 2013 Apr 13. Biol Rev Camb Philos Soc. 2014. PMID: 23581455 Review.
-
Maxwell EE, Fernández MS, Schoch RR. Maxwell EE, et al. PLoS One. 2012;7(8):e41692. doi: 10.1371/journal.pone.0041692. Epub 2012 Aug 1. PLoS One. 2012. PMID: 22870244 Free PMC article.
-
Fischer V, Maisch MW, Naish D, Kosma R, Liston J, Joger U, Krüger FJ, Pérez JP, Tainsh J, Appleby RM. Fischer V, et al. PLoS One. 2012;7(1):e29234. doi: 10.1371/journal.pone.0029234. Epub 2012 Jan 3. PLoS One. 2012. PMID: 22235274 Free PMC article.
-
Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world.
Jenkyns HC. Jenkyns HC. Philos Trans A Math Phys Eng Sci. 2003 Sep 15;361(1810):1885-916; discussion 1916. doi: 10.1098/rsta.2003.1240. Philos Trans A Math Phys Eng Sci. 2003. PMID: 14558900 Review.
Cited by
-
The rise of macropredatory pliosaurids near the Early-Middle Jurassic transition.
Sachs S, Madzia D, Thuy B, Kear BP. Sachs S, et al. Sci Rep. 2023 Oct 16;13(1):17558. doi: 10.1038/s41598-023-43015-y. Sci Rep. 2023. PMID: 37845269 Free PMC article.
-
Comparative functional morphology indicates niche partitioning among sympatric marine reptiles.
Foffa D, Young MT, Brusatte SL. Foffa D, et al. R Soc Open Sci. 2024 May 15;11(5):231951. doi: 10.1098/rsos.231951. eCollection 2024 May. R Soc Open Sci. 2024. PMID: 39076819 Free PMC article.
-
Miedema F, Bastiaans D, Scheyer TM, Klug C, Maxwell EE. Miedema F, et al. BMC Ecol Evol. 2024 Mar 16;24(1):34. doi: 10.1186/s12862-024-02208-3. BMC Ecol Evol. 2024. PMID: 38493100 Free PMC article.
-
Klug C, Sivgin T, Miedema F, Scheffold B, Reisdorf AG, Stössel I, Maxwell EE, Scheyer TM. Klug C, et al. Swiss J Palaeontol. 2024;143(1):31. doi: 10.1186/s13358-024-00327-4. Epub 2024 Sep 1. Swiss J Palaeontol. 2024. PMID: 39229570 Free PMC article.
References
-
- Aiglstorfer M, Havlik P, Herrera Y. The first metriorhynchoid crocodyliform from the Aalenian (Middle Jurassic) of Germany, with implications for the evolution of Metriorhynchoidea. Zoological Journal of the Linnean Society. 2020;188:522–551.
-
- Andrews CW. On some new Plesiosauria from the Oxford Clay of Peterborough. Annals and Magazine of Natural History; Zoology Botany and Geology. 1909;4:418–429. doi: 10.1080/00222930908692691. - DOI
-
- Andrews CW. A descriptive catalogue of the marine reptiles of the Oxford clay. Based on the Leeds Collection in the British Museum (Natural History), London. Part I. London: Order of the Trustees of the British Museum; 1910a.
-
- Andrews CW. Note on the osteology of Ophthalmosaurus icenicus seeley an ichthyosaurian reptile from the Oxford Clay of Peterborough. Geological Magazine. 1910b;4:202–208. doi: 10.1017/S0016756800133321. - DOI
-
- Arkhangelsky MS. On a new ichthyosaur from the Callovian stage of the Volga region near Saratov. Paleontological Journal. 1999;33:88–90.
Grants and funding
The authors received no funding for this work.
LinkOut - more resources
Full Text Sources
Other Literature Sources