Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium Calothrix - PubMed
. 1996 May;142(5):1255-1263.
doi: 10.1099/13500872-142-5-1255.
Affiliations
- PMID: 33725794
- DOI: 10.1099/13500872-142-5-1255
Free article
Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium Calothrix
Douglas Campbell. Microbiology (Reading). 1996 May.
Free article
Abstract
The cyanobacterium Calothrix sp. strain PCC 7601 drastically changes phycobiliprotein composition and colour in response to light quality, through complementary chromatic adaptation (CCA). Red light promotes phycocyanin-II and inhibits phycoerythrin synthesis, while green light has the opposite effect, through changes in transcription regulated by a putative green/red photoreceptor(s). The effects of CCA on photosynthesis were characterized by measuring oxygen evolution and chlorophyll fluorescence parameters. Cells fully acclimated to either red or green light achieve a similar photosynthetic quantum yield of oxygen evolution (light-use efficiency). Shifting acclimated cells from green to red or from red to green light caused similar 40% drops in photosynthetic quantum yield. Therefore, full CCA significantly increases light use efficiency, which is of great importance under light-limited growth. Cells growing under red light are in state I, with very low PS II to PS I energy transfer, since red light is absorbed both by phycocyanin in the phycobilisome/PS II supracomplex and by PS I chlorophyll. Cells growing under green light are in state II, with high transfer of excitation energy from the phycobilisome/PS II supracomplex to PS I. This transfer allows green light captured by phycoerythrin to ultimately drive both PS I and PS II photochemistry.
Keywords: chlorophyll fluorescence; light-harvesting; phycobiliproteins; state transition.
Similar articles
-
Otsu T, Eki T, Hirose Y. Otsu T, et al. Plant Physiol. 2022 Aug 29;190(1):779-793. doi: 10.1093/plphys/kiac284. Plant Physiol. 2022. PMID: 35751608 Free PMC article.
-
Bueno M, Fillat MF, Strasser RJ, Maldonado-Rodriguez R, Marina N, Smienk H, Gómez-Moreno C, Barja F. Bueno M, et al. Environ Sci Pollut Res Int. 2004;11(2):98-106. doi: 10.1007/BF02979709. Environ Sci Pollut Res Int. 2004. PMID: 15108857
-
Complementary chromatic adaptation: photoperception to gene regulation.
Kehoe DM, Grossman AR. Kehoe DM, et al. Semin Cell Biol. 1994 Oct;5(5):303-13. doi: 10.1006/scel.1994.1037. Semin Cell Biol. 1994. PMID: 7881070 Review.
-
Theiss C, Schmitt FJ, Pieper J, Nganou C, Grehn M, Vitali M, Olliges R, Eichler HJ, Eckert HJ. Theiss C, et al. J Plant Physiol. 2011 Aug 15;168(12):1473-87. doi: 10.1016/j.jplph.2011.02.002. Epub 2011 Mar 10. J Plant Physiol. 2011. PMID: 21396735 Review.
Cited by
-
Bordowitz JR, Montgomery BL. Bordowitz JR, et al. J Bacteriol. 2008 Jun;190(11):4069-74. doi: 10.1128/JB.00018-08. Epub 2008 Apr 4. J Bacteriol. 2008. PMID: 18390655 Free PMC article.
-
Regulation of BolA abundance mediates morphogenesis in Fremyella diplosiphon.
Singh SP, Montgomery BL. Singh SP, et al. Front Microbiol. 2015 Nov 5;6:1215. doi: 10.3389/fmicb.2015.01215. eCollection 2015. Front Microbiol. 2015. PMID: 26594203 Free PMC article.
-
Light Quantity Affects the Regulation of Cell Shape in Fremyella diplosiphon.
Pattanaik B, Whitaker MJ, Montgomery BL. Pattanaik B, et al. Front Microbiol. 2012 May 7;3:170. doi: 10.3389/fmicb.2012.00170. eCollection 2012. Front Microbiol. 2012. PMID: 22586424 Free PMC article.
-
Seib LO, Kehoe DM. Seib LO, et al. J Bacteriol. 2002 Feb;184(4):962-70. doi: 10.1128/jb.184.4.962-970.2002. J Bacteriol. 2002. PMID: 11807056 Free PMC article.
-
Responding to light signals: a comprehensive update on photomorphogenesis in cyanobacteria.
Gupta A, Pandey P, Gupta R, Tiwari S, Singh SP. Gupta A, et al. Physiol Mol Biol Plants. 2023 Dec;29(12):1915-1930. doi: 10.1007/s12298-023-01386-6. Epub 2023 Nov 18. Physiol Mol Biol Plants. 2023. PMID: 38222287 Free PMC article. Review.