Peach palm flour: production, hygroscopic behaviour and application in cookies - PubMed
- ️Fri Jan 01 2021
Peach palm flour: production, hygroscopic behaviour and application in cookies
Gessica Silva Ribeiro et al. Heliyon. 2021.
Abstract
In this work, two types of flour from peach palm fruits (Bactris gasipaes) were prepared to be used to produce cookies: one with the whole fruit (pulp + peel) and another one with only the pulp. Analyses of proximate composition, physicochemical and hygroscopic behaviour were carried out in both flour, as well as sensory analysis of the produced cookies. Both the types of flour did not differ statistically in total lipids, total carbohydrates and ashes (p > 0.05). Among the mathematical models tested for the prediction of the hygroscopic behaviour of both flour, Halsey model showed the best fit to the experimental data (R2 = 0.99 and P<10%). The cookies produced with both types of peach palm flour presented low moisture (4.9-6.2%), high lipid content (25.56-26.37%) and total carbohydrates (59.10-61.84%), resulting in a product with high total energetic value (501.8-502.8 kcal/100 g). Based on the results of acceptance test, both cookie formulations presented good sensory acceptance (>70%). The purchase intention inquiry showed that the cookie prepared with the whole fruit flour presented the highest percentage of purchase intention (85%), which demonstrate that the use of peach palm peels in the development of new food products represent an excellent alternative for the use of by-products.
Keywords: Amazonian fruit; Bactris gasipaes; Bakery product; Hygroscopicity; Sensory analysis.
© 2021 The Authors.
Conflict of interest statement
The authors declare no conflicts of interest. Renan Campos Chisté is part of the Editorial Advisory Board of Heliyon journal (Food Science and Nutrition section).
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/8144666/b19cbe6df79d/gr1.gif)
(a) Peach palm fruits from the seedless variety, which have green-coloured peels at full ripe stage, during sanitization; (b) cooked peach palm fruits without the peel; and (c) vacuum-packed peach palm flour.
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/8144666/234bd34f31a0/gr2.gif)
Peach palm cookies produced with (a) peach palm flour prepared with only the fruit pulp and (b) peach palm flour prepared with the whole fruit (pulp + peel).
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/8144666/cef322977b17/gr3.gif)
Moisture adsorption (◯) and desorption (□) isotherms at 25 °C for the peach palm flour prepared with only the fruit pulp (a) and peach palm flour prepared with the whole fruit (pulp + peel) (b) fitted by the Halsey model (──).
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/8144666/fb99ea0d2b69/gr4.gif)
Moisture adsorption (a) and desorption (b) isotherms at 25 °C for the peach palm flour prepared with only the fruit pulp (◯) and peach palm flour prepared with the whole fruit (pulp + peel) (□).
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/8144666/88be09447fbd/gr5.gif)
Purchase intention of the peach palm cookies produced with (a) peach palm flour prepared with only the fruit pulp and (b) peach palm flour prepared with the whole fruit (pulp + peel).
Similar articles
-
Peach Palm (Bactris gasipaes Kunth.): Ancestral Tropical Staple with Future Potential.
González-Jaramillo N, Bailon-Moscoso N, Duarte-Casar R, Romero-Benavides JC. González-Jaramillo N, et al. Plants (Basel). 2022 Nov 16;11(22):3134. doi: 10.3390/plants11223134. Plants (Basel). 2022. PMID: 36432863 Free PMC article. Review.
-
Noronha Matos KA, Praia Lima D, Pereira Barbosa AP, Zerlotti Mercadante A, Campos Chisté R. Noronha Matos KA, et al. Food Chem. 2019 Jan 30;272:216-221. doi: 10.1016/j.foodchem.2018.08.053. Epub 2018 Aug 12. Food Chem. 2019. PMID: 30309535
-
Martínez-Girón J, Osorio C, Ordoñez-Santos LE. Martínez-Girón J, et al. Food Sci Technol Int. 2022 Sep;28(6):535-544. doi: 10.1177/10820132211025133. Epub 2021 Jul 2. Food Sci Technol Int. 2022. PMID: 34210179
-
Soares SD, Dos Santos OV, da Conceição LRV, Costi HT, Silva Júnior JOC, Nascimento FDCAD, Pena RDS. Soares SD, et al. Foods. 2023 Dec 1;12(23):4344. doi: 10.3390/foods12234344. Foods. 2023. PMID: 38231871 Free PMC article.
-
Kramer YV, Clement CR, de Carvalho JC, Fernandes AV, da Silva CVA, Koolen HHF, Aguiar JPL, Nunes-Nesi A, Ramos MV, Araújo WL, Gonçalves JFC. Kramer YV, et al. Plants (Basel). 2023 Jan 11;12(2):337. doi: 10.3390/plants12020337. Plants (Basel). 2023. PMID: 36679052 Free PMC article. Review.
Cited by
-
Amazonian palm tree fruits: From nutritional value to diversity of new food products.
Amorim IS, Amorim DS, Godoy HT, Mariutti LRB, Chisté RC, da Silva Pena R, Bogusz Junior S, Chim JF. Amorim IS, et al. Heliyon. 2024 Jan 6;10(2):e24054. doi: 10.1016/j.heliyon.2024.e24054. eCollection 2024 Jan 30. Heliyon. 2024. PMID: 38288015 Free PMC article. Review.
-
From purposeless residues to biocomposites: A hyphae made connection.
Enriquez-Medina I, Bermudez AC, Ortiz-Montoya EY, Alvarez-Vasco C. Enriquez-Medina I, et al. Biotechnol Rep (Amst). 2023 Jul 1;39:e00807. doi: 10.1016/j.btre.2023.e00807. eCollection 2023 Sep. Biotechnol Rep (Amst). 2023. PMID: 37448784 Free PMC article.
-
Bakshi G, Ananthanarayan L. Bakshi G, et al. J Food Sci Technol. 2022 Jul;59(7):2535-2544. doi: 10.1007/s13197-021-05270-7. Epub 2021 Oct 23. J Food Sci Technol. 2022. PMID: 35734135 Free PMC article.
-
Full Exploitation of Peach Palm (Bactris gasipaes Kunth): State of the Art and Perspectives.
de Cássia Spacki K, Corrêa RCG, Uber TM, Barros L, Ferreira ICFR, Peralta RA, de Fátima Peralta Muniz Moreira R, Helm CV, de Lima EA, Bracht A, Peralta RM. de Cássia Spacki K, et al. Plants (Basel). 2022 Nov 21;11(22):3175. doi: 10.3390/plants11223175. Plants (Basel). 2022. PMID: 36432904 Free PMC article. Review.
-
Peach Palm (Bactris gasipaes Kunth.): Ancestral Tropical Staple with Future Potential.
González-Jaramillo N, Bailon-Moscoso N, Duarte-Casar R, Romero-Benavides JC. González-Jaramillo N, et al. Plants (Basel). 2022 Nov 16;11(22):3134. doi: 10.3390/plants11223134. Plants (Basel). 2022. PMID: 36432863 Free PMC article. Review.
References
-
- Araújo A.L., Pena R.S. Effect of particle size and temperature on the hygroscopic behaviour of cassava flour from dry group and storage time estimation. CyTA - J. Food. 2020;18(1):178–186.
-
- Association of Official Analytical Chemists – AOAC . eighteenth ed. AOAC; Arlington: 2010. Official Methods of Analysis of Association of Official Analytical Chemists International.
-
- Associação Brasileira de Normas Técnicas – ABNT . 2016. NBR ISO 11136:2016: Sensory Analysis – Methodology – General Guidance for Conducting Hedonic Tests with Consumers in a Controlled Area.https://www.abntcatalogo.com.br/norma.aspx?ID362824
-
- Blahovec J., Yanniotis S. Modified classification of sorption isotherms. J. Food Eng. 2009;91(1):72–77.
-
- Brunauer S., Emmet T.H., Teller F. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938;60(2):309–319.
LinkOut - more resources
Full Text Sources
Other Literature Sources