Spinocerebellar ataxias (SCAs) caused by common mutations - PubMed
Review
Spinocerebellar ataxias (SCAs) caused by common mutations
Ulrich Müller. Neurogenetics. 2021 Oct.
Abstract
The term SCA refers to a phenotypically and genetically heterogeneous group of autosomal dominant spinocerebellar ataxias. Phenotypically they present as gait ataxia frequently in combination with dysarthria and oculomotor problems. Additional signs and symptoms are common and can include various pyramidal and extrapyramidal signs and intellectual impairment. Genetic causes of SCAs are either repeat expansions within disease genes or common mutations (point mutations, deletions, insertions etc.). Frequently the two types of mutations cause indistinguishable phenotypes (locus heterogeneity). This article focuses on SCAs caused by common mutations. It describes phenotype and genotype of the presently 27 types known and discusses the molecular pathogenesis in those 21 types where the disease gene has been identified. Apart from the dominant types, the article also summarizes findings in a variant caused by mutations in a mitochondrial gene. Possible common disease mechanisms are considered based on findings in the various SCAs described.
Keywords: Ca2+ homeostasis; Common mutations; Disease mechanisms; Spinocerebellar ataxias.
© 2021. The Author(s).
Conflict of interest statement
The author declares no competing interests.
Figures

Negative regulation of TRPC3 by PKC at the postsynaptic membrane (modified from [118]). For details see text. TRPC3, short transient receptor potential channel 3; DAG, diacylglycerol; PKC, protein kinase c; PKG, protein kinase g

Twenty-one genes that cause spinocerebellar degeneration when mutated (see text and Table 1)

Subcellular location of polypeptides encoded by 21 genes involved in spinocerebellar degeneration. Note that one gene product can be present in more than one cell compartment. Only locations assigned with highest confidence (levels 4, 5 of genecards) are given. From:
https://www.genecards.org/Similar articles
-
Spinocerebellar ataxia: relationship between phenotype and genotype - a review.
Sun YM, Lu C, Wu ZY. Sun YM, et al. Clin Genet. 2016 Oct;90(4):305-14. doi: 10.1111/cge.12808. Epub 2016 Jun 30. Clin Genet. 2016. PMID: 27220866 Review.
-
Spinocerebellar ataxia type 23 (SCA23): a review.
Wu F, Wang X, Li X, Teng H, Tian T, Bai J. Wu F, et al. J Neurol. 2021 Dec;268(12):4630-4645. doi: 10.1007/s00415-020-10297-5. Epub 2020 Nov 11. J Neurol. 2021. PMID: 33175256 Review.
-
The clinical diagnosis of autosomal dominant spinocerebellar ataxias.
Klockgether T. Klockgether T. Cerebellum. 2008;7(2):101-5. doi: 10.1007/s12311-008-0023-2. Cerebellum. 2008. PMID: 18418679
-
The wide spectrum of spinocerebellar ataxias (SCAs).
Manto MU. Manto MU. Cerebellum. 2005;4(1):2-6. doi: 10.1080/14734220510007914. Cerebellum. 2005. PMID: 15895552 Review.
-
Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias.
Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC. Buijsen RAM, et al. Neurotherapeutics. 2019 Apr;16(2):263-286. doi: 10.1007/s13311-018-00696-y. Neurotherapeutics. 2019. PMID: 30607747 Free PMC article. Review.
Cited by
-
Rosenbohm A, Pott H, Thomsen M, Rafehi H, Kaya S, Szymczak S, Volk AE, Mueller K, Silveira I, Weishaupt JH, Tönnies H, Seibler P, Zschiedrich K, Schaake S, Westenberger A, Zühlke C, Depienne C, Trinh J, Ludolph AC, Klein C, Bahlo M, Lohmann K. Rosenbohm A, et al. Mov Disord. 2022 Dec;37(12):2427-2439. doi: 10.1002/mds.29221. Epub 2022 Sep 23. Mov Disord. 2022. PMID: 36148898 Free PMC article.
-
Ghorbani F, de Boer EN, Benjamins-Stok M, Verschuuren-Bemelmans CC, Knapper J, de Boer-Bergsma J, de Vries JJ, Sikkema-Raddatz B, Verbeek DS, Westers H, van Diemen CC. Ghorbani F, et al. Neurol Genet. 2023 Feb 2;9(1):e200050. doi: 10.1212/NXG.0000000000200050. eCollection 2023 Feb. Neurol Genet. 2023. PMID: 38058854 Free PMC article.
-
Matsugi A, Nishishita S, Bando K, Kikuchi Y, Tsujimoto K, Tanabe Y, Yoshida N, Tanaka H, Douchi S, Honda T, Odagaki M, Nakano H, Okada Y, Mori N, Hosomi K. Matsugi A, et al. Sci Rep. 2023 Aug 25;13(1):13917. doi: 10.1038/s41598-023-41088-3. Sci Rep. 2023. PMID: 37626122 Free PMC article.
-
Contribution of Glial Cells to Polyglutamine Diseases: Observations from Patients and Mouse Models.
Cvetanovic M, Gray M. Cvetanovic M, et al. Neurotherapeutics. 2023 Jan;20(1):48-66. doi: 10.1007/s13311-023-01357-5. Epub 2023 Apr 5. Neurotherapeutics. 2023. PMID: 37020152 Free PMC article. Review.
-
KCa 2.2 (KCNN2): A physiologically and therapeutically important potassium channel.
Rahman MA, Orfali R, Dave N, Lam E, Naguib N, Nam YW, Zhang M. Rahman MA, et al. J Neurosci Res. 2023 Nov;101(11):1699-1710. doi: 10.1002/jnr.25233. Epub 2023 Jul 19. J Neurosci Res. 2023. PMID: 37466411 Free PMC article. Review.
References
-
- Seixas AI, Loureiro JR, Costa C, Ordonez-Ugalde A, Marcelino H, Oliveira CL, et al. (2017) A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia. Am J Hum Genet. 2017;101:87–103. doi: 10.1016/j.ajhg.2017.06.007. - DOI - PMC - PubMed
-
- Kobayashi H, Koji A, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, et al. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet. 2011;89:121–130. doi: 10.1016/j.ajhg.2011.05.015. - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous