Optimization of Printing Parameters to Maximize the Mechanical Properties of 3D-Printed PETG-Based Parts - PubMed
- ️Sat Jan 01 2022
Optimization of Printing Parameters to Maximize the Mechanical Properties of 3D-Printed PETG-Based Parts
Sara Valvez et al. Polymers (Basel). 2022.
Abstract
Fused filament fabrication (FFF) is the most popular additive manufacturing method, which allows the production of highly complex three-dimensional parts with minimal material waste. On the other hand, polyethylene terephthalate glycol (PETG) has been used to replace traditional polymers for 3D printing due to its chemical resistance and mechanical performance, among other benefits. However, when fibres are added, these PETG-based composites can be suitable for many different applications. Nevertheless, to guarantee their good performance in-service in these applications, and even extend to new ones, it is necessary for their mechanical properties to be maximized. Therefore, this study intends to optimize the printing parameters (nozzle temperature, printing speed, layer height and filling) in order to maximize the mechanical properties of printed PETG, PETG+CF (carbon fibre-reinforced PETG composites) and PETG+KF (aramid fibre-reinforced PETG composites). The Taguchi method was used for the experimental procedure design, and the specimens were produced according to the L16 orthogonal array. Finally, an analysis of variance (ANOVA) was performed, with a 95% confidence interval, to analyse the effect of the printing parameters on the bending properties. It was possible to conclude that the best bending properties for PETG, PETG+CF and PETG+KF were obtained for extrusion temperatures of 265 °C, 195 °C and 265 °C, printing speeds of 20, 60 and 20 mm/s, layer heights of 0.4, 0.53 and 0.35 mm and an infill density of 100% for the three materials, respectively.
Keywords: FFF; additive manufacturing; design of experiments; mechanical properties; mechanical testing; printing parameters; thermal conductivity.
Conflict of interest statement
The authors declare no conflict of interest.
Figures

Details of the 3D printer used to produce specimens in a temperature and humidity-controlled room.

(a) Sample and sensor assembly; (b) samples used in the thermal conductivity tests.

Main effect plot for means of: (a) bending stress, (b) bending modulus, (c) bending strain, and main effect plot for means of S/N ratios of: (d) bending stress, (e) bending modulus, (f) bending strain for PETG samples.

Main effect plot for means of: (a) bending stress, (b) bending modulus, (c) bending strain, and main effect plot for means of S/N ratios of: (d) fexural stress, (e) bending modulus, (f) bending strain for PETG+CF samples.

Main effect plot for means of: (a) bending stress, (b) bending modulus, (c) bending strain, and main effect plot for means of S/N ratios of: (d) bending stress, (e) bending modulus, (f) bending strain for PETG+KF samples.

Pareto diagram for PETG and for: (a) bending stress; (b) bending modulus; (c) bending strain.

Pareto diagram for PETG+CF and for: (a) bending stress; (b) bending modulus; (c) bending strain.

Pareto diagram for PETG+KF and for: (a) bending stress; (b) bending modulus; (c) bending strain.

Bending stress–strain curves showing the: (a) repeatability of the curves for neat PETG; (b) comparison between materials.
Similar articles
-
Rijckaert S, Daelemans L, Cardon L, Boone M, Van Paepegem W, De Clerck K. Rijckaert S, et al. Polymers (Basel). 2022 Jan 12;14(2):298. doi: 10.3390/polym14020298. Polymers (Basel). 2022. PMID: 35054704 Free PMC article.
-
Hsueh MH, Lai CJ, Wang SH, Zeng YS, Hsieh CH, Pan CY, Huang WC. Hsueh MH, et al. Polymers (Basel). 2021 May 27;13(11):1758. doi: 10.3390/polym13111758. Polymers (Basel). 2021. PMID: 34072038 Free PMC article.
-
Martin KA, Riveros GA, Thornell TL, McClelland ZB, Freeman EL, Stinson JT. Martin KA, et al. Polymers (Basel). 2024 Jul 4;16(13):1913. doi: 10.3390/polym16131913. Polymers (Basel). 2024. PMID: 39000768 Free PMC article.
-
Sola A, Trinchi A. Sola A, et al. Polymers (Basel). 2023 Oct 25;15(21):4219. doi: 10.3390/polym15214219. Polymers (Basel). 2023. PMID: 37959900 Free PMC article. Review.
-
3D Printing of Fibre-Reinforced Thermoplastic Composites Using Fused Filament Fabrication-A Review.
Dickson AN, Abourayana HM, Dowling DP. Dickson AN, et al. Polymers (Basel). 2020 Sep 24;12(10):2188. doi: 10.3390/polym12102188. Polymers (Basel). 2020. PMID: 32987905 Free PMC article. Review.
Cited by
-
Universal Approach to Integrating Reduced Graphene Oxide into Polymer Electronics.
Abyzova E, Petrov I, Bril' I, Cheshev D, Ivanov A, Khomenko M, Averkiev A, Fatkullin M, Kogolev D, Bolbasov E, Matkovic A, Chen JJ, Rodriguez RD, Sheremet E. Abyzova E, et al. Polymers (Basel). 2023 Dec 5;15(24):4622. doi: 10.3390/polym15244622. Polymers (Basel). 2023. PMID: 38139874 Free PMC article.
-
Pires-Junior R, Macedo L, Frizera A, Pontes MJ, Leal-Junior A. Pires-Junior R, et al. Polymers (Basel). 2023 Jan 26;15(3):640. doi: 10.3390/polym15030640. Polymers (Basel). 2023. PMID: 36771940 Free PMC article.
-
Issabayeva Z, Shishkovsky I. Issabayeva Z, et al. Polymers (Basel). 2023 Feb 25;15(5):1162. doi: 10.3390/polym15051162. Polymers (Basel). 2023. PMID: 36904401 Free PMC article.
-
Lümkemann N, Klimenta M, Hoffmann M, Meinen J, Stawarczyk B. Lümkemann N, et al. Materials (Basel). 2023 Jul 5;16(13):4835. doi: 10.3390/ma16134835. Materials (Basel). 2023. PMID: 37445149 Free PMC article.
-
Petousis M, Ntintakis I, David C, Sagris D, Nasikas NK, Korlos A, Moutsopoulou A, Vidakis N. Petousis M, et al. Polymers (Basel). 2023 Sep 28;15(19):3926. doi: 10.3390/polym15193926. Polymers (Basel). 2023. PMID: 37835975 Free PMC article.
References
-
- Fernandez-Vicente M., Calle W., Ferrandiz S., Conejero A. Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Print. Addit. Manuf. 2016;3:183–192. doi: 10.1089/3dp.2015.0036. - DOI
-
- Ćwikła G., Grabowik C., Kalinowski K., Paprocka I., Ociepka P. The Influence of Printing Parameters on Selected Mechanical Properties of FDM/FFF 3D-Printed Parts. IOP Conf. Ser. Mater. Sci. Eng. 2017;227:012033. doi: 10.1088/1757-899X/227/1/012033. - DOI
-
- Ruban W., Vijayakumar V., Dhanabal P., Pridhar T. Effective Process Parameters in Selective Laser Sintering. Int. J. Rapid Manuf. 2014;4:148. doi: 10.1504/IJRAPIDM.2014.066036. - DOI
-
- Standard terminology for additive manufacturing—General Principles—Terminology. ASTM (American Society for Testing and Materials) International; West Conshohocken, PA, USA: 2015.
-
- Sood A.K., Ohdar R.K., Mahapatra S.S. Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts. Mater. Des. 2010;31:287–295. doi: 10.1016/j.matdes.2009.06.016. - DOI
LinkOut - more resources
Full Text Sources