Ecological Predictors of Zoonotic Vector Status Among Dermacentor Ticks (Acari: Ixodidae): A Trait-Based Approach - PubMed
- ️Sat Jan 01 2022
Ecological Predictors of Zoonotic Vector Status Among Dermacentor Ticks (Acari: Ixodidae): A Trait-Based Approach
Jessica T Martin et al. J Med Entomol. 2022.
Abstract
Increasing incidence of tick-borne human diseases and geographic range expansion of tick vectors elevates the importance of research on characteristics of tick species that transmit pathogens. Despite their global distribution and role as vectors of pathogens such as Rickettsia spp., ticks in the genus Dermacentor Koch, 1844 (Acari: Ixodidae) have recently received less attention than ticks in the genus Ixodes Latreille, 1795 (Acari: Ixodidae). To address this knowledge gap, we compiled an extensive database of Dermacentor tick traits, including morphological characteristics, host range, and geographic distribution. Zoonotic vector status was determined by compiling information about zoonotic pathogens found in Dermacentor species derived from primary literature and data repositories. We trained a machine learning algorithm on this data set to assess which traits were the most important predictors of zoonotic vector status. Our model successfully classified vector species with ~84% accuracy (mean AUC) and identified two additional Dermacentor species as potential zoonotic vectors. Our results suggest that Dermacentor species that are most likely to be zoonotic vectors are broad ranging, both in terms of the range of hosts they infest and the range of ecoregions across which they are found, and also tend to have large hypostomes and be small-bodied as immature ticks. Beyond the patterns we observed, high spatial and species-level resolution of this new, synthetic dataset has the potential to support future analyses of public health relevance, including species distribution modeling and predictive analytics, to draw attention to emerging or newly identified Dermacentor species that warrant closer monitoring for zoonotic pathogens.
Keywords: Dermacentor; host range; machine learning; tick-borne disease.
© The Author(s) 2022. Published by Oxford University Press on behalf of Entomological Society of America.
Figures

Mean relative influence of the top predictor variables. Relative influence indicates the importance of each variable in reducing prediction error. Error lines represent ± 1.5 × IQR, where IQR is the interquartile range between the first and third quartiles, generated from 50 bootstrap runs of the generalized boosted regression model. Morphological measurements are given in millimeters. Predictor variables are defined in Supp. Table S1 (online only).

Partial dependence plots for a selection of top predictor variables from the generalized boosted regression model used to predict the vector status of Dermacentor ticks. The black line represents the average marginal effect (y-axis, left) of a given trait (x-axis) on vector status after accounting for the average effect of all other predictor variables in the model. Gray bands represent 95% CI. The histograms show the relative frequency (y-axis, right) of tick species with a given value of each trait. Morphological measurements are given in millimeters.

Global distribution of Dermacentor tick species.

Species richness of Dermacentor ticks in North America (A), Europe (B), and Asia (C). Species richness ranges from a single species (lighter colors) to eight species (darker colors).
Similar articles
-
Tick-borne pathogens in ticks collected from dogs, Latvia, 2011-2016.
Namina A, Capligina V, Seleznova M, Krumins R, Aleinikova D, Kivrane A, Akopjana S, Lazovska M, Berzina I, Ranka R. Namina A, et al. BMC Vet Res. 2019 Nov 6;15(1):398. doi: 10.1186/s12917-019-2149-5. BMC Vet Res. 2019. PMID: 31694625 Free PMC article.
-
Grech-Angelini S, Stachurski F, Vayssier-Taussat M, Devillers E, Casabianca F, Lancelot R, Uilenberg G, Moutailler S. Grech-Angelini S, et al. Transbound Emerg Dis. 2020 Mar;67(2):745-757. doi: 10.1111/tbed.13393. Epub 2019 Nov 3. Transbound Emerg Dis. 2020. PMID: 31630482
-
Bacterial and protozoal pathogens found in ticks collected from humans in Corum province of Turkey.
Karasartova D, Gureser AS, Gokce T, Celebi B, Yapar D, Keskin A, Celik S, Ece Y, Erenler AK, Usluca S, Mumcuoglu KY, Taylan-Ozkan A. Karasartova D, et al. PLoS Negl Trop Dis. 2018 Apr 12;12(4):e0006395. doi: 10.1371/journal.pntd.0006395. eCollection 2018 Apr. PLoS Negl Trop Dis. 2018. PMID: 29649265 Free PMC article.
-
Dermacentor reticulatus: a vector on the rise.
Földvári G, Široký P, Szekeres S, Majoros G, Sprong H. Földvári G, et al. Parasit Vectors. 2016 Jun 1;9(1):314. doi: 10.1186/s13071-016-1599-x. Parasit Vectors. 2016. PMID: 27251148 Free PMC article. Review.
-
Kocoń A, Nowak-Chmura M, Asman M, Kłyś M. Kocoń A, et al. Ann Agric Environ Med. 2023 Mar 31;30(1):22-30. doi: 10.26444/aaem/161552. Epub 2023 Mar 7. Ann Agric Environ Med. 2023. PMID: 36999852 Review.
Cited by
-
Current and Future Habitat Suitability Models for Four Ticks of Medical Concern in Illinois, USA.
Kopsco HL, Gronemeyer P, Mateus-Pinilla N, Smith RL. Kopsco HL, et al. Insects. 2023 Feb 21;14(3):213. doi: 10.3390/insects14030213. Insects. 2023. PMID: 36975898 Free PMC article.
-
Wei H, Xiong T, Wang SS, Wang BH, Du LF, Xu Q, Zheng JJ, Cui XM, Jia N, Jiang JF, Shi W, Zhao L, Cao WC. Wei H, et al. Int J Parasitol Parasites Wildl. 2024 Jan 16;23:100907. doi: 10.1016/j.ijppaw.2024.100907. eCollection 2024 Apr. Int J Parasitol Parasites Wildl. 2024. PMID: 38283887 Free PMC article.
-
Lippi CA, Gaff HD, Nadolny RM, Ryan SJ. Lippi CA, et al. bioRxiv [Preprint]. 2023 Jan 15:2023.01.11.523628. doi: 10.1101/2023.01.11.523628. bioRxiv. 2023. PMID: 36711596 Free PMC article. Updated. Preprint.
-
Lippi CA, Gaff HD, Nadolny RM, Ryan SJ. Lippi CA, et al. Vector Borne Zoonotic Dis. 2023 Jun;23(6):316-323. doi: 10.1089/vbz.2023.0002. Epub 2023 Apr 20. Vector Borne Zoonotic Dis. 2023. PMID: 37083463 Free PMC article.
-
Phylogenetic and biogeographical traits predict unrecognized hosts of zoonotic leishmaniasis.
Glidden CK, Murran AR, Silva RA, Castellanos AA, Han BA, Mordecai EA. Glidden CK, et al. PLoS Negl Trop Dis. 2023 May 31;17(5):e0010879. doi: 10.1371/journal.pntd.0010879. eCollection 2023 May. PLoS Negl Trop Dis. 2023. PMID: 37256857 Free PMC article.
References
-
- Apanaskevich, D. A., Apanaskevich M. A., Nooma W., Ahantarig A., and Trinachartvanit W.. 2021. Reinstatement of Dermacentor tricuspis (Schulze, 1933) n. comb., n. stat. (Acari: Ixodidae) as a valid species, synonymization of D. atrosignatus Neumann, 1906 and description of a new species from Indonesia, Malaysia and Thailand. Syst. Parasitol. 98: 207–230. - PubMed
-
- Bivand, R. S., Pebesma E., and Gomez-Rubio V.. 2013. Applied spatial data analysis with R, 2nd ed. Springer, New York.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous