Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping - PubMed
Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping
Ehsan Hamzehpoor et al. Nat Chem. 2023 Jan.
Abstract
Organic room-temperature phosphorescence, a spin-forbidden radiative process, has emerged as an interesting but rare phenomenon with multiple potential applications in optoelectronic devices, biosensing and anticounterfeiting. Covalent organic frameworks (COFs) with accessible nanoscale porosity and precisely engineered topology can offer unique benefits in the design of phosphorescent materials, but these are presently unexplored. Here, we report an approach of covalent doping, whereby a COF is synthesized by copolymerization of halogenated and unsubstituted phenyldiboronic acids, allowing for random distribution of functionalized units at varying ratios, yielding highly phosphorescent COFs. Such controlled halogen doping enhances the intersystem crossing while minimizing triplet-triplet annihilation by diluting the phosphors. The rigidity of the COF suppresses vibrational relaxation and allows a high phosphorescence quantum yield (ΦPhos ≤ 29%) at room temperature. The permanent porosity of the COFs and the combination of the singlet and triplet emitting channels enable a highly efficient COF-based oxygen sensor, with an ultra-wide dynamic detection range (~103-10-5 torr of partial oxygen pressure).
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Similar articles
-
Tian Y, Si D, Li J, Lin W, Yang X, Gao S, Cao R. Tian Y, et al. Small Methods. 2024 Aug 28:e2401083. doi: 10.1002/smtd.202401083. Online ahead of print. Small Methods. 2024. PMID: 39194386
-
Zhou J, Stojanović L, Berezin AA, Battisti T, Gill A, Kariuki BM, Bonifazi D, Crespo-Otero R, Wasielewski MR, Wu YL. Zhou J, et al. Chem Sci. 2020 Nov 5;12(2):767-773. doi: 10.1039/d0sc04646a. Chem Sci. 2020. PMID: 34163810 Free PMC article.
-
Achieving Ultralong Room-Temperature Phosphorescence in Covalent Organic Framework System.
Jiang J, Du X, Zhang K. Jiang J, et al. J Phys Chem Lett. 2024 Feb 15;15(6):1658-1667. doi: 10.1021/acs.jpclett.4c00110. Epub 2024 Feb 5. J Phys Chem Lett. 2024. PMID: 38315167
-
2D and 3D Covalent Organic Frameworks: Cutting-Edge Applications in Biomedical Sciences.
Yazdani H, Shahbazi MA, Varma RS. Yazdani H, et al. ACS Appl Bio Mater. 2022 Jan 17;5(1):40-58. doi: 10.1021/acsabm.1c01015. Epub 2021 Dec 14. ACS Appl Bio Mater. 2022. PMID: 35014828 Review.
-
Homochiral Covalent Organic Frameworks for Asymmetric Catalysis.
Ma HC, Zou J, Li XT, Chen GJ, Dong YB. Ma HC, et al. Chemistry. 2020 Nov 2;26(61):13754-13770. doi: 10.1002/chem.202001006. Epub 2020 Sep 17. Chemistry. 2020. PMID: 32333481 Review.
Cited by
-
Wang H, Zhang Y, Zhou C, Wang X, Ma H, Yin J, Shi H, An Z, Huang W. Wang H, et al. Light Sci Appl. 2023 Apr 10;12(1):90. doi: 10.1038/s41377-023-01132-3. Light Sci Appl. 2023. PMID: 37037811 Free PMC article.
-
Si C, Wang T, Gupta AK, Cordes DB, Slawin AMZ, Siegel JS, Zysman-Colman E. Si C, et al. Angew Chem Int Ed Engl. 2023 Oct 23;62(43):e202309718. doi: 10.1002/anie.202309718. Epub 2023 Sep 15. Angew Chem Int Ed Engl. 2023. PMID: 37656606 Free PMC article.
-
Molecular design and functional outcomes of RTP and TADF traits in isomers.
Chen M, Chen Y, Zhang T, Zhang H, Xiao Z, Su Z, Wu Y. Chen M, et al. RSC Adv. 2024 Oct 11;14(44):32221-32228. doi: 10.1039/d4ra05807k. eCollection 2024 Oct 9. RSC Adv. 2024. PMID: 39399255 Free PMC article.
-
Phosphorescence resonance energy transfer from purely organic supramolecular assembly.
Dai XY, Huo M, Liu Y. Dai XY, et al. Nat Rev Chem. 2023 Dec;7(12):854-874. doi: 10.1038/s41570-023-00555-1. Epub 2023 Nov 22. Nat Rev Chem. 2023. PMID: 37993737 Review.
-
Isostructural doping for organic persistent mechanoluminescence.
Xie Z, Xue Y, Zhang X, Chen J, Lin Z, Liu B. Xie Z, et al. Nat Commun. 2024 Apr 30;15(1):3668. doi: 10.1038/s41467-024-47962-6. Nat Commun. 2024. PMID: 38693122 Free PMC article.
References
-
- Côté, A. P. et al. Crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005). - DOI
-
- Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016). - DOI
-
- Keller, N. & Bein, T. Optoelectronic processes in covalent organic frameworks. Chem. Soc. Rev. 50, 1813–1845 (2021). - DOI
-
- Jadhav, T. et al. 2D poly (arylene vinylene) covalent organic frameworks via aldol condensation of trimethyltriazine. Angew. Chem. Int. Ed. 58, 13753–13757 (2019). - DOI
-
- Dalapati, S., Jin, E., Addicoat, M., Heine, T. & Jiang, D. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 138, 5797–5800 (2016). - DOI
LinkOut - more resources
Full Text Sources