Polymer induced liquid crystal phase behavior of cellulose nanocrystal dispersions - PubMed
- ️Sat Jan 01 2022
. 2022 Oct 6;4(22):4863-4870.
doi: 10.1039/d2na00303a. eCollection 2022 Nov 8.
Affiliations
- PMID: 36381514
- PMCID: PMC9642361
- DOI: 10.1039/d2na00303a
Polymer induced liquid crystal phase behavior of cellulose nanocrystal dispersions
Qiyao Sun et al. Nanoscale Adv. 2022.
Abstract
Cellulose nanocrystals (CNCs) are a promising bio-based material that has attracted significant attention in the fabrication of functional hybrid materials. The rod-like shape and negative surface charge of CNCs enable their rich colloidal behavior, such as a liquid crystalline phase and hydrogel formation that can be mediated by different additives. This study investigates the effect of depletion-induced attraction in the presence of non-absorbing polyethylene glycol (PEG) of different molecular weights in CNC aqueous dispersions, where the polymer molecules deplete the space around particles, apply osmotic pressure and drive the phase transition. Polarized light microscopy (PLM), rheology, small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are used to characterize the phase behavior over a time period of one month. In our results, pure CNC dispersion shows three typical liquid crystal shear rheology regimes and cholesteric self-assembly behavior. Tactoid nucleation, growth and coalescence are observed microscopically, and eventually the dispersion presents macroscopic phase separation. PEG with lower molecular weight induces weak attractive depletion forces. Tactoid growth is limited, and the whole system turns into a fully nematic phase macroscopically. With PEG of higher molecular weight, attractive depletion force becomes predominant, thus CNC self-assembly is inhibited and nematic hydrogel formation is triggered. Overall, we demonstrate that depletion induced attraction forces by the addition of PEG enable precise tuning of CNC self-assembly and phase behavior with controllable mechanical strength and optical activity. These findings deepen our fundamental understanding of cellulose nanocrystals and advance their application in colloidal systems and nanomaterials.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
Lin M, Singh Raghuwanshi V, Browne C, Simon GP, Garnier G. Lin M, et al. J Colloid Interface Sci. 2022 May;613:207-217. doi: 10.1016/j.jcis.2021.12.182. Epub 2021 Dec 30. J Colloid Interface Sci. 2022. PMID: 35033766
-
da Rosa RR, Silva PES, Saraiva DV, Kumar A, de Sousa APM, Sebastião P, Fernandes SN, Godinho MH. da Rosa RR, et al. Adv Mater. 2022 Jul;34(28):e2108227. doi: 10.1002/adma.202108227. Epub 2022 Jun 6. Adv Mater. 2022. PMID: 35502142
-
Jiang M, McMillan MF, Davis V, Kitchens CL. Jiang M, et al. Biomacromolecules. 2018 Aug 13;19(8):3435-3444. doi: 10.1021/acs.biomac.8b00746. Epub 2018 Jul 12. Biomacromolecules. 2018. PMID: 29944348
-
Xu Y, Atrens A, Stokes JR. Xu Y, et al. Adv Colloid Interface Sci. 2020 Jan;275:102076. doi: 10.1016/j.cis.2019.102076. Epub 2019 Nov 19. Adv Colloid Interface Sci. 2020. PMID: 31780045 Review.
-
Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals.
Duan C, Cheng Z, Wang B, Zeng J, Xu J, Li J, Gao W, Chen K. Duan C, et al. Small. 2021 Jul;17(30):e2007306. doi: 10.1002/smll.202007306. Epub 2021 May 28. Small. 2021. PMID: 34047461 Review.
Cited by
-
Thermodynamically controlled multiphase separation of heterogeneous liquid crystal colloids.
Tao H, Rigoni C, Li H, Koistinen A, Timonen JVI, Zhou J, Kontturi E, Rojas OJ, Chu G. Tao H, et al. Nat Commun. 2023 Aug 29;14(1):5277. doi: 10.1038/s41467-023-41054-7. Nat Commun. 2023. PMID: 37644027 Free PMC article.
References
-
- Liu J. Chinga-Carrasco G. Cheng F. Xu W. Willför S. Syverud K. Xu C. Cellulose. 2016;23:3129–3143. doi: 10.1007/s10570-016-1038-3. - DOI
-
- Kim K. Kim P. J. Chowdhury R. A. Kantharaj R. Candadai A. Marconnet A. Pol V. G. Youngblood J. P. Chem. Eng. J. 2021;417:128128. doi: 10.1016/j.cej.2020.128128. - DOI
-
- Calabrese V. Courtenay J. C. Edler K. J. Scott J. L. Curr. Opin. Green Sustainable Chem. 2018;12:83–90. doi: 10.1016/j.cogsc.2018.07.002. - DOI
LinkOut - more resources
Full Text Sources
Miscellaneous